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Abstract – This paper describes a mathematical modelling 

approach for heat transfer calculations in underground high 
voltage and middle voltage electrical power cables. First of the all 
typical layout of the cable in the sand or soil is described. Then 
numerical algorithms are targeted to the two-dimensional 
mathematical models of transient heat transfer. Finite Volume 
Method is suggested for calculations. Different strategies of non-
orthogonality error elimination are considered. Acute triangles 
meshes were applied in two-dimensional domain to eliminate this 
error. Adaptive mesh is also tried. For calculations OpenFOAM 
open source software which uses Finite Volume Method is 
applied. To generate acute triangles meshes aCute library is used. 
The efficiency of the proposed approach is analyzed. The results 
show that the second order of convergence or close to that is 
achieved (in terms of sizes of finite volumes). Also it is shown that 
standard strategy, used by OpenFOAM is less efficient than the 
proposed approach. Finally it is concluded that for solving real 
problem a spatial adaptive mesh is essential and adaptive time 
steps also may be needed. 

 
Keywords – Power transmission; Numerical models; Finite 

element analysis; Finite volume methods; Convergence of 
numerical methods.  

I. INTRODUCTION 

This research is aimed to get closer to develop design rules 
for power transmission lines and cables, which have to meet 
the latest power transmission network technical and 
economical requirements. At present the power lines are over-
dimensioned by up to 60% in terms of transmitted power. 
However, today, as the new distributed generating capacities 
are installed e.g. large wind farms, bio-gas plants or waist-to-
energy plants, the infrastructure of power grid must be re-
designed or new optimization strategies for the available grid 
developed. Power cables for power distribution applications 
are still rated according to IEC 287 and IEC 853 standards, 
which use the Neher and McGrath methods from 1957 [1]. 
However, today there are many applications where analytical 
and heuristic formulas cannot describe precisely enough the 
conditions under which the cables are installed. An example 
could be an underground cable route, where the installation 
conditions for a cable are different only for a short distance 
(crossing the road). The present standards require that the 
cable’s current-carrying capacity must be reduced only due to 
the fact that the cables route crosses the road. To be on the 
safe side this rule is acceptable, but today the cost effective 
designing of cable installations comes first as the copper price 
level has reached its maximum since decades. 

The knowledge of dynamics (in time) of heat distribution 
in/around electrical cables is necessary to optimize the usage 
of electricity transferring infrastructure. It is important to 
determine: maximal electric current for the cable; optimal 
cable parameters under certain circumstances; cable life 
expectancy; other engineering factors. 

Fundamentals of the heat distribution in cables are given 
[2], but for further readings refer [3], [4] and [5]. In papers [6] 
and [7] efficient parallel numerical algorithms for simulation 
of temperature distribution in electrical cables are presented 
and inverse problem for fitting the diffusion coefficient of the 
air-isolation material mixture to the experimental data are 
solved. 

Numerical algorithms for parabolic and elliptic problems 
with discontinuous coefficients have been widely investigated 
in many papers. The use of standard finite element method 
(FEM) to solve interface problems is equivalent to arithmetic 
averaging of discontinuous coefficients. The mixed FEM leads 
to the harmonic averaging if special quadrature formulae are 
used – see, e.g. works [8] and [9]. 

Conservative finite-difference schemes for approximation 
of parabolic and elliptic problems were derived by 
Tikhonov/Samarskii in [10] and [11]. These schemes are 
robust and use only general assumptions on the position of the 
interface. Also such finite difference schemes were proposed, 
which approximate with the second order of accuracy not only 
the solution, but also the normal flux through the interface – 
see [12] and [13] for details. 

II. PROBLEM FORMULATION 

 The main aim of the research is to develop and validate a 
set of mathematical models and numerical algorithms for the 
heat transfer simulation in underground electrical cables (see 
Fig. 1 and Fig. 2).  

 

Fig. 1. Typical high-voltage (110 kV) cables. 
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Fig. 2. Underground layout in canal. 

 
Fig. 3. An example of geometry. 

Since the heat transfer mechanism in the underground 
electrical cables is complicated and non-relevant, the model 
can be simplified. In general the cable consists of metallic core 
and slices of different materials around it, for mathematical 
correctness tests it is enough to take one slice with typical 
parameters. The length of a cable (or more cables) is much 
bigger than its diameter (there are no effects along the cable’s 
length), sand (or soil) area is much bigger than the area of 
cables, so considering the two-dimensional model in sand is 
enough. Domain description for mathematical modelling of 
the problem is presented in Fig. 3. The metal area (with 
thermal source) is marked with red, sand – grey, isolation – 
blue colour. It has to be noted that coefficient of heat 
conductivity of isolation is much smaller than that of metal 
and cables in the whole domain are relatively small (h23≫d). 

III.  MATHEMATICAL MODELS  

Firs of the all the mathematical models of the problem has 
to be formulated. The non-stationary problem is given by the 
parabolic differential equation [6]: 
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where:  
x is defined as x=(x1,x2), T(x,t) – function of temperature, λ(x) 
> 0 – heat conductivity coefficient, q(x,t,T) – the source 
function, ρ(x) > 0 – mass density, c(x) > 0 – specific heat 
capacity, Tb and tmax – constants, ∂Ω is Ω domain contour, 
(x1,x2): –L/2 ≤ x1 ≤ L/2, –H/2 ≤ x2 ≤ H/2. 

 
Main remarks about the formulated model: 

1) λ, c, ρ are discontinuous; 

2) values may differ 1000 times, that makes the problem more 
complicated; 

3) tmax can be large, comparing to T(t) dynamics; 

4) 
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The corresponding stationary problem is given by elliptic 

differential equation [2]: 

 

 

( ) ( )

2

1

, ,

, ,

j jj

T
q x

x x

T x u x x

λ
=

 ∂ ∂
− = ∈Ω

∂ ∂ 





 = ∈ ∂Ω



∑
, (2)

 

where: 

 
 

( ) 1

1

,    0

0,            

I r R
q x

r R

≤ ≤
=  >

 and 

 1 1

2 1 2

3 2

,0 ,  

, ,

, .           

r R

R r R

r R

λ
λ λ

λ

≤ ≤
= ≤ ≤
 >

, 

but λ1, λ2 and λ3, are heat conductivity coefficients for metal, 
isolation and sand, correspondingly. 

 
In turn R1, R2 are inner and outer radiuses of isolation ring, 
while 
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The exact solution of the problem (2) is: 
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IV.  FINITE VOLUME METHOD 

The problem (1) can be solved utilizing the Finite Volume 
Method (FVM). Open source software OpenFOAM [14] was 
used as a base for implementation o FVM calculation 
schemes. At the same time the authors have developed a C++ 
independent solver in order to confirm the results of 
OpenFOAM. All the results presented in this paper were 
equivalent with both solvers. Discontinuities of coefficients 
make it necessary to discretize the domain by finite volumes, 
which would fit to the contours of different sub-domains 
precisely. So it is necessary to generate special meshes that are 
adapted to the geometry. However, the complicated geometry 
of domains with discontinuous coefficients can cause so-called 
non-orthogonality of a mesh. Additional notes: in this paper 
only cell-centred FVM approximations are used, harmonic 
mean formulas for coefficients are necessary (this calculations 
option is available in OpenFOAM). 

 

A. FVM non-orthogonality error problem solving strategies  

Fig. 4 illustrates non-orthogonality of a mesh of two finite 
volumes. Non-orthogonality of the mesh and additional error 
appear, when the vector connecting the centres (P and R) of 
neighbouring elements is not collinear to the normal, i.e. 

0α ≠ . It is a well-known problem for non-structured grids, 
more details can be found, for example, in [15].  

Several strategies exist to solve the non-orthogonality 
problem: 
• Correction of the approximation by using iterative methods 

(supported by OpenFOAM directly). 
• Construct dual meshes from the basic Delaunay 

triangulation. 
• Triangulate domain with acute triangles and take Voronoi 

points as cell centres. 
 

Since the contours of dual mesh finite volumes are not 
aligned to the contours of domains with different coefficients, 
the dual mesh construction is more problematic for solution of 
the problem. That is why it is necessary to consider the first 
one and the last one presented strategy. 

In order to test the efficiency of different solving strategies 
the same cable was taken as an example. For solving the 
stationary problem with Tmax→∞, q(x, t) = q(x) it is possible to 
apply equation (2) and its exact solution. Note that in terms of 
non-orthogonality it is as weak as original problem, since the 
non-orthogonality error is magnified by diffusion operator.  
 
The values of other parameters used in calculations: 
ρ metal = 8700, c metal = 385, λ metal = 400; 
ρ isolation = 1380, c isolation = 2000, λ isolation = 0.28; 
ρ sand = 1600, c sand = 890, λ sand = 1. 
 

In case of 3 cables (values of dimensions in [m] from Fig. 3): 
d = 0.0348, s = 0.0076, H = 0.2, L = 0.4; 
h1 = 0.0826, h2 = h3 = 0.0652. 
 
For standalone cable in [m]: 
L = H = 0.2. 

 
Fig. 4. Non-orthogonality of finite volumes. 

 
(a) 
 

  
(a) 
 

Fig. 5. Examples of structural meshes. 
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(a) 
 

 
(b) 

Fig. 6. Rectangular mesh topology (a) and the corresponding error (b) with 
N=180224. 

 
Fig. 7. Error distribution with orthogonal rectangular mesh in C norm. 

 
Fig. 8. Mesh orthogonality with acute triangles. 

 

B. Non-orthogonality correction strategy 

 The OpenFOAM build-in iterative non-orthogonality 
corrections approach was tested in the following step. Firstly, 
the rectangular mesh using OpenFOAM built-in tools was 
constructed (Fig. 5 and Fig. 6). Then the OpenFOAM built-in 
non-orthogonality corrections algorithm was tested and the 
convergence of solution was analysed. The result of this 
analysis is presented in Table I. 

TABLE I 

CONVERGENCE FOR NON-ORTHOGONAL MESHES 

N EC P 

704 0.27287  

2816 0.143202 0.930162 

11264 0.071781 0.996374 

45056 0.035338 1.022373 

180224 0.017357 1.025723 

 
In this table: 

N – the number of finite volumes; 

EC – defines the error in C norm (maximal difference for all 
mesh volumes); 

p – the experimental convergence order, i.e. EC = O (hp); 

h – the average size of triangles. 

It is assumed also that h = O(N – p/2). The results presented in 
Table I show that the convergence rate is lower than 
theoretical rate of FVM itself (p = 2) and non-orthogonality 
error is dominant. Error distribution is presented in Fig. 6. As 
it can be seen the error distribution is not radially symmetrical 
(as the solution is). Just for comparison the error distribution 
with orthogonal rectangular mesh (without non-orthogonality 
error) within circular domain is also presented (Fig. 7). This 
mesh does not fit the analysed case, since boundaries are 
circular, but the above described problem need to be 
calculated in a rectangular area. 

C. Discretization with acute triangles 

One more strategy is to use triangular mesh and take 
Voronoi points as finite volumes centres that form an 
unstructured orthogonal mesh (Fig. 8). 



50 
 

This method, however, raises a strict requirement: all angles 
must be less than 90 degrees. In other words – triangles must 
be acute. To obtain such kind of meshes the aCute library [16] 
was used. The corresponding examples of triangulations are 
presented in Fig. 9. 

As it has been mentioned before, cables can be quite far 
from each other, so it is necessary to generate an adaptive 
mesh. Adaptive meshes presented in this paper are generated 
heuristically without any mesh optimality proofs. Let us 
consider the function of mesh triangle sizes 
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where: 
Ra – the radius of adaptive area; note that Ra > R2; 
hmin – the size of triangles on the contour of the cable; 
hmax – the size of triangles in the sand domain. 

These parameters are chosen heuristically. At the same time a 
and α are calculated based on the following requirements: 

  
min2 haR =α  and  maxhaRa =α . 

Also for all the experiments hmax = 10hmin and Ra = 2R2, where 
R2 is the radius of the investigated cable, the adaptive mesh is 
illustrated in Fig. 10. 

The convergence analysis is presented in Table II. First let 
us make additional notes about experimental convergence rate. 
Refinement cannot be done uniformly, since mesh must fit 
coefficients discontinuity contours. Therefore it is not possible 
to guarantee that in the whole mesh all triangles become 
smaller in equal proportions. The only way is setting needed 
parameters for aCute software, so that the refinement is 
pseudo-uniform. The results presented in Table II show the 
convergence rate close to 2. 

V.  PARABOLIC PROBLEM SOLUTION 

This section describes the implementation of developed 
approach to solve the problem (1) with geometry presented in 
Fig. 3 and parameters presented at the end of subsection IV-A 
and with backward Euler scheme used for ∂T/∂t. The time 
interval for problem is 24 hours, so that t∈[0,24]. The 
temperature source function is defined as follows: 
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where: Ωi,m is the metal domain of i-th cable (the  numeration 
by index i starts from the left side – see Fig. 3). 

TABLE II 

CONVERGENCE ACUTE MESHES 

N EC p 

669 0.2007691140000  

2230 0.0483012850900 2.366660425 

7061 0.0149549419800 2.034411785 

27639 0.0050015730830 1.605241562 

110069 0.0013158649120 1.932524773 

 
Functions are defined as: 
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The functions f1(t), f1(t) and f1(t) are presented graphically in 
Fig. 11. 
 

The problem was solved with N = 6018 and with a fixed 
time step τ = 0.5 h. The corresponding calculations took 3 
seconds with a single core AMD Phenom™ II X6 1100T 3.3 
GHz processor. The centre of the coordinates of the cables is 
assigned as xCi, where i is the cable number. The 
corresponding dynamical functions of temperature in the 
centres of the cables T(xCi,t) are presented in Fig. 12, Fig. 13 
and Fig. 14. 

 
As it is seen from these figures, cables affect each other, 

despite the fact that the cables are quite far from each other: 
 

• after 20 hours the temperature in the cable 1 becomes 
slightly lower when the temperature of cable 2 decreases;  

• the temperature in the cable 2 slightly decreases, after the 
source for the  cable 1 becomes 0; 

• the temperature in the cable 3 is lower in local minimum 
after 22 hours than in local minimum before 20 hours, 
since the temperature in cable 2 decreases greatly. 

 
Also it is possible to note that after big changes of the 

source function of the solutions changes fast, so the usage of 
adaptive time step strategy would be reasonable. However, 
time-dependent error solving strategy and time step error 
solving strategy are not discussed in this paper. 
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 (a)  (b) 

 

 
(c) 

Fig. 9. Meshes generated with aCute software for (a) stand alone cable, (b) compact triangular placement of three cables, (c) linear placement of of three cables.

    
 (a)  (b) 

Fig. 10. Calculations with N = 435472 and the mesh topology: (a) mesh topology, (b) error. 
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 (a) (b) (c) 

Fig. 11. Functions for parabolic problem solution: (a) function f1(t), (b) function f2(t), (c) function f3(t). 

 
Fig. 12. The temperature in the centre of the first cable T(xC1,t). 

 
Fig. 13. The temperature in the centre of the second cable T(xC2,t). 

 
Fig. 14. The temperature in the centre of the third cable T(xC3,t). 
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VI.  CONCLUSIONS 

Two different strategies of generating spatial meshes for 
heat transfer simulation in underground electrical cables were 
discussed in this paper. Meshes fitting geometry subdomains 
contours were generated. Usage of rectangular meshes and 
non-orthogonality corrections methods built-in into 
OpenFOAM decrease the FVM rate of solution convergence. 
Domain triangularization with cell centres in Voronoi points 
eliminates non-orthogonality errors, keeping the FVM order of 
convergence.  For solving real problem spatial adaptive mesh 
is essential and adaptive time steps also may be required. 
Heuristic for generating adaptive spatial mesh is proposed. 
Finally, harmonic mean formulas deal with high coefficients 
jumps, keeping the error small enough for modelling purposes. 
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