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Abstract – Speech signal is redundant and non-stationary by 

nature. Because of vocal tract inertness these variations are not 

very rapid and the signal can be considered as stationary in short 

segments. It is presumed that in short-time magnitude spectrum 

the most distinct information of speech is contained. This is the 

main reason for speech signal analysis in frame-by-frame 

manner. The analyzed speech signal is segmented into 

overlapping segments (so-called frames) for this purpose. 

Segments of 15–25 ms with the overlap of 10–15 ms are used 

usually.  

In this paper we present results of our investigation of analysis 

window length and frame shift influence on speech recognition 

rate. We have analyzed three different cepstral analysis 

approaches for this purpose: mel frequency cepstral analysis 

(MFCC), linear prediction cepstral analysis (LPCC) and 

perceptual linear prediction cepstral analysis (PLPC). The 

highest speech recognition rate was obtained using 10 ms length 

analysis window with the frame shift varying from 7.5 to 10 ms 

(regardless of analysis type). The highest increase of recognition 

rate was 2.5 %. 

 

Keywords – Computers and information processing; Speech 

analysis; Speech recognition; Speech enhancement. 

I. INTRODUCTION 

Speech analysis is the main stage of the speech recognition 

process. The extracted data (so-called features) with high 

discriminating power should condition fast and reliable speech 

recognition process.  

The essential purpose of these features is to carry specific 

information about linguistic content of the speech utterance. In 

ideal case these features should not contain information about 

the speaker: its gender, speaking style, age, physical condition, 

etc. This is not true for real-world recognition tasks and the 

selection of noise and speaker robust features is the main 

problem in speech recognition systems. A tremendous amount 

of research has been made in search of appropriate feature 

extraction and enhancing techniques in order to obtain reliable 

and noise robust speech recognition [1], [2] and [3]. Various 

static and dynamic feature systems were proposed for speech 

recognition: time-scale (like frame energy, zero-crossing-rate), 

frequency-scale features (like formant based, spectral pairs, 

etc.), various cepstral domain and human hearing modeling 

features. 

The first step of any feature extraction process is the 

segmentation of speech signal into analysis frames – 

overlapping signal segments. This allows us to represent non-

stationary speech signal by nature as stationary segments of 

the signal. Frames with constant length of 15–25 ms and 

overlap of 10–15 ms are usually used.  

Despite these parameter values are declared as 

effective [3], [4] and [5] for speech analysis task, some 

criticism should be given at this point. The analysis frame 

length of 15–25 ms has been used for more than 30 years. The 

sampling rate of the speech records was enlarged from 

6 kHz [6] up to 44.1 kHz during this period. Therefore, the 

rate of analyzed signal data was increased by a few times 

despite the same frame window length is used. As we know 

higher data order means higher spectral analysis resolution. 

And higher resolution does not mean higher speech 

recognition rate. In some cases additional spectral information 

can represent the undesirable reference to individual speaker 

attributes. Thus analysis parameter values should be revised 

considering modern speech signal analysis approaches.  

In this paper we will present our investigation of analysis 

parameters manipulation as the recognition rate improving 

technique. Our goal is to evaluate the effect of analysis 

parameters on speech recognition rate (the analysis order will 

not be investigated). Finding optimal (in some sense) analysis 

parameters values would enable us to improve speech 

recognition rate without any substantial modification of 

speech recognition system. 

This paper is organized as follows. Section II provides 

comparative review of feature extraction methods for speech 

recognition. Section III describes speech analysis parameters 

and their impact on analysis results. Section IV presents 

experimental process and results. Experimental results are 

presented and discussed in Section V. 

II. FEATURE EXTRACTION 

Mel frequency cepstral (MFCC) analysis and perceptual 

linear prediction (PLP) analysis are the most widely used 

feature extraction approaches in modern speech recognition 

systems [7] – [10]. 

MFCC analysis is based on filter-bank which is considered 

as the model of the speech processing in human auditory 

system. The filter-bank is implemented as the set of triangular 

shaped band-pass filters arranged in non-uniform frequency 

scale. The mel scale and bark scale are widely used for filter-

bank arrangement. Mel-frequency cepstral coefficients are 

calculated [5]: 
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where i – analysis order, N – length of analyzed signal. 
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Regardless of MFCC wide usage [7] – [10]  in speech 

recognition task, these features lack the ability to capture non-

linearities which are related to patterns in speech 

waveforms [11]. Authors [11] proposed Gamma-chirp filter-

bank for frequency analysis thus simulating the non-linearity 

of a human hearing system. For non-linear speech processing 

there was used the Dyn operator. This operator simulates 

signal processing in human auditory system. Researchers tried 

to optimize speech recognition by altering mel-cepstrum [12]. 

Characteristics of filters and the order of analysis were 

modified to find out whether that has any influence on 

recognition rate. 

Various MFCC analysis enhancement techniques were 

proposed for robust speech recognition. The following 

techniques can be named: multitaper method based on 

averaging of several windows (tapers) in frequency domain, 

RASTA filtering, feature warping, normalization of cepstral 

coefficients. 

Perceptual linear predictive cepstral analysis is based on 

usage of all-pole model for simulation of processing in 

auditory system spectrum [13]. First of all speech short-time 

power spectrum is calculated. Afterwards the critical-band 

(bark) analysis, i.e. transformation from linear frequency scale 

spectrum to bark frequency is performed: 
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where f is linear frequency in Hertz. 

The equal-loudness pre-emphasis and loudness compression 

follows next. This models the intensity of the perceived 

speech and its loudness in hearing system. The approximation 

of the power spectrum by an all-pole model using 

autocorrelation method and cepstral analysis follows 

finally [14]. 

Linear prediction (LPC) based analysis approaches seek to 

model the speech generation process thus extracting the 

appropriate speech data. The LPC model represents speech 

production process as “excitation source-system” (glottis–lips) 

scheme where the source signal (vibration of the vocal chords) 

and the system (vocal tract) can be modeled apart. This allows 

us to model the vocal tract using linear filter thus rejecting the 

speaker specific information. More detailed LPC and LPC 

derivative analysis can be found in [14]. 

Using discrete wavelet transformation temporal information 

is extracted by shifting and rescaling main wavelet [15], [16]. 

For this purpose speech signal is analyzed using particular 

resolutions at different frequencies. Discrete wavelet 

transform extracts not only frequency information of speech 

signal but also linguistically relevant temporal information, 

such as [16] and [17]:  

 vocal tract transfer function information, which contains 

amplitude and duration references of voicing and 

articulation, vowel length;  

 information about periodicity and its variation;  

 fluctuations at higher frequencies.  

Some modern speech analysis approaches for feature 

extraction are proposed. Minimum Variance Distortionless 

Response (MVDR) spectrum estimation is used to estimate 

speech envelope (which represents vocal tract transfer 

function) and is declared as more robust to additive noise [18]. 

Another approach normalizes the ratio of arithmetic and 

geometric means of power spectrum coefficients, which ought 

to be applicable in the situations when the speech is corrupted 

by noise heavily [19]. 

The analysis parameters (the length and the shift of the 

analysis frame) are chosen “traditionally”: the length of 

analysis frame is 15–25 ms usually with the shift of 10-15 ms. 

The order of static feature analysis is set to 12–15 plus various 

differential feature forms [4], [20] – [24], [3] and [5]. These 

values of analysis parameters are used without any 

argumentation or questioning, though it is evident that in some 

cases revised analysis parameters will have influence on 

speech recognition rate. 

In the next section we analyze the effect of the analysis 

window length and shift size on speech recognition 

performance. 

III. SPEECH ANALYSIS PARAMETERS 

Since human speech signal is non-stationary this state of the 

signal can be eliminated using short-time analysis. The short-

time spectral analysis is performed using short-time Fourier 

transform: 

      i ij j m
n

m

S e s m w n m e
 

  , (3) 

where  ij
nS e


 is Fourier transform of the windowed signal 

s(m)w(n0-m), n here represents analysis window shift in 

samples. 

The frequency resolution of spectral analysis Δf is related to 

the length of the analyzed signal N and the sampling 

frequency Fs. Considering the length of the analyzed signal is 

determined by the length of the analysis window tw we can get 
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The longer analysis window is used the higher frequency 

resolution and the lower time resolution is obtained. Thus the 

analysis window of 20 ms gives us frequency resolution of 

50 Hz. If we shorten the analysis window down to 10 ms we 

will get higher time resolution but the frequency resolution 

will be reduced to 100 Hz and this can burden the analysis 

process of low frequency pitch-based speech and its 

harmonics. Therefore, the spectral analysis result is affected 

by the window length inevitably. Various solutions are 

proposed for selection of analysis window length. 

Rabiner and Schafer [25] have acknowledged, that if 

analysis window is too large, analysis cannot reflect variation 

of characteristics of speech signal adequately. This suggests 

that there is no single one and truthful window length value 

for all cases, because pitch period varies within speakers: for 

female or children it is higher, for male – lower. Pitch period 

value fluctuates from 3.3 to 16.6 ms (pitch frequency varies 
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from 60 to 300 Hz). If we expand the length of the analysis 

window, the analyzed speech segment may become non-

stationary. If analysis frame length will be shortened too 

much, some signal characteristics will be lost. Besides, if we 

shorten analysis window until it becomes shorter than pitch 

period (2–3 ms) we may miss to register pitch peaks.  

Fig. 1 presents short-time magnitude spectra of Lithuanian 

phoneme [a] (taken from Lithuanian word “hello”). The 

spectrum was estimated using different length analysis 

windows: 10, 20, 50, 100, 200 ms, respectively. We can see 

that longer analysis frame gives higher resolution, thus we can 

analyze separate pitch harmonics. However, if the frame size 

is too high, transform gives us redundant frequency resolution 

which can give the effect of noise. This would be crucial for 

correct speech recognition rate. 

It is proposed to use analysis window with the length of two 

or three pitch periods, i.e. 5–20 ms for high pitch speakers and 

20–50 ms for low pitch speakers [5], [26] and [27] . 

Other researchers claim that longer-duration windows (50–

100 ms) overpass shorter ones in the mean of noise 

compensation [19]. 

In all aforementioned cases the window length is fixed and 

constant (for different speakers). This gives simpler but non-

optimal analysis process. If fixed-size window is applied the 

analyzed signal segment may consist of quasi-periodic and 

non-periodic parts of speech and analysis of such segment 

would result in inadequate frequency data. This would be the 

source of uncertainty in speech recognition process. 

There are proposed alternative analysis window 

implementations to improve speech recognition rate. 
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Fig. 1. Short-time Fourier transform, using various analysis window lengths. It 

is apparent that using wider frame gives better spectral resolution. 

The first one is to use pitch period synchronized window 

length and shift size of analysis window [20] and [28]. Speech 

signal is segmented using the size of pitch contour of the 

signal and analysis window length and frame shift sizes are 

chosen as multiples of pitch period to minimize spectral 

distortion. In this case we get fixed but speaker-dependent 

analysis parameter values. Two problem sources should be 

pointed for pitch synchronized analysis parameters. 

First of all there is not the only pitch determination 

approach giving reliable results. There are various 

determination approaches proposed giving slightly different 

results. And even minor inaccuracy of pitch period 

determination can result in spectral distortion of extracted 

features. Secondly, the pitch varies during the speech 

(especially if the speech is emotionally aroused). In this case 

pitch-related and fixed frame length based analysis can give 

distorted representation of the speech.  

Therefore, variable-length frame based analysis technique is 

proposed [21] and [29]. Pseudo-pitch synchronous feature 

extraction aligns the length of analyzed signal segment to its 

natural cycle thus avoiding pitch period truncation [30]. The 

frame size can depend on speaking rate, particular sounds 

also [29]. 

Another important aspect of analysis is the degree of 

overlapping or analysis window (frame) shift. The size of 

window shift determines the particularity of information about 

speech dynamics. The lower frame shift value we use, the 

more details we can retrieve about speech dynamics. 

However, such analysis will take longer and it does not 

necessarily mean higher speech recognition rate.  

The overlap is selected equal to half or one third of the 

analysis window length usually [20] – [22]. However, some 

original ideas for setting the frame shift (or the frame rate) are 

proposed. 

The frame rate selection approach based on a posteriori 

signal-to-noise ratio is proposed in [31]. The approach is 

capable of assigning higher frame rate to a rapid changing 

state of speech and lower frame rate to more steady-state of 

speech. In [21] the size of overlap is set to half of analysis 

window and recursively is reduced till minimum LPC residual 

error is found. Another proposal is to vary frame shift 

according to phonetic information [. 

The lengths of the speech signal and analysis window, 

frame shift are related: 

 1
N L

K
L
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where K – the number of extracted frames in speech signal, N 

– the length of the signal, L – analysis window length, ∆L – 

the shift of analysis window.  

Usually we have L ≪ N, thus the increase or decrease of 

analysis window length will not necessarily influence on the 

number of extracted frames to be analyzed. Therefore, the 

main criterion of analysis window length selection is the 

frequency resolution.  
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The frame shift determines the number of extracted frames. 

The smaller is the window shift, the more signal frames are 

extracted, the longer it will take to analyze the signal. The size 

of frame shift ∆L is directly related with the number of 

analysis frames K, e.g. if we increase frame shift twice, the 

number of frame we get will be twice smaller, thus analysis 

time should diminish twice also. This is important in case of 

speech recognition on the devices with limited calculation 

resources. Frame shift control can save calculation time and 

power.  

We state that by varying analysis window length and shift 

we can improve speech recognition process. The improvement 

can be evidenced by higher recognition rate or faster 

recognition process. 

IV. EXPERIMENTAL SETUP AND RESULTS 

We will investigate the isolated word recognition rate 

dependence on analysis window length and shift size. 

For this purpose we used recordings of Lithuanian isolated 

words pronounced by 8 speakers (4 women and 4 men). 

Utterances were captured using 8,000 Hz sampling rate, mono 

channel and 16 bit quantization. The training set contained 

800 patterns (8 speakers x 100 words x 1 pronunciation). 

800 patterns were intended for testing. 

We used Dynamic Time Warping (DTW) based recognizer. 

It is a pattern comparison based recognition approach allowing 

simple and effective modeling the recognition of isolated 

words. 

Three different cepstral analysis techniques were used for 

feature extraction: mel-frequency cepstral coefficients 

(MFCC), linear predictive cepstral coefficients (LPCC) and 

perceptual linear predictive cepstral coefficients (PLPC). This 

enabled us to use the same Euclidean distance calculation 

scheme for all analysis techniques. The recognizer was 

implemented in MATLAB environment. 

The goal of the first experiment was to determine the 

window length giving the highest recognition rate. We varied 

the analysis window length from 10 to 30 ms (with the 

increase step of 2.5 ms) for all analysis types for this purpose. 

The results of the first experiment are given in Fig. 2. 

As we can see the highest average recognition rate was 

obtained using 10 ms window length for all analysis types. 

This length is twice shorter than widely used value of 20–

25 ms. The recognition rate using 10 ms frame size was 

increased by up 1.2 % in comparison with 20 ms frame size 

case (for PLP analysis). 

Analyzing the average recognition rates for female and 

male speakers separately we noticed that the “optimal” 

window (giving the highest recognition rate) for female 

speakers was slightly shorter than for male speakers and 

ranged from 10 ms to 12.5 ms for all analysis types. The 

“optimal” length of analysis window for male speakers was 

more inconsistent and ranged from 10 ms (in the case of PLPC 

analysis) to 17.5 ms (for LPCC analysis). 

The increase of window length reduced the average 

recognition rate. However, the window length increase up to 

15 ms in PLP analysis case and increase up to 20 ms in case of 

LPCC and MFCC analyses resulted in decrease of recognition 

rate by less than 1 %. This decrease can be considered as 

negligible thus acceptable if needed.  

 

86,00

87,00

88,00

89,00

90,00

91,00

92,00

93,00

94,00

10,0 12,5 15,0 17,5 20,0 22,5 25,0 27,5 30,0

R
ec

o
g
n

it
io

n
 r

a
te

, 
%

Analysis window length, ms

PLPC LPCC MFCC

 

Fig. 2. Recognition rate dependence on analysis window length.
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Fig. 3. Recognition rate dependence on analysis window shift.  
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Fig. 4. Speech recognition improvement through analysis window parameters 

for different speech analysis techniques. 

TABLE I 

 FRAME SHIFT VALUES GIVING HIGHEST RECOGNITION RATE 

 

Analysis 
type 

Minimal frame size Maximal frame size 

Frame size, 
ms 

Frame shift, 
% 

Frame size, 
ms 

Frame shift, 
% 

PLPC 10 100 15 83 

LPCC 10 75 20 100 

MFCC 10 75 20 100 

 

 

The lowest recognition rates were obtained for the window 

length of 22.5–30 ms (27.5–30 ms for female speakers and 

22.5 ms for male speakers particularly).  

The second experiment was intended for frame shift 

selection. During this experiment we used the window length 

of 10 ms and varied frame shift from 5 ms (half-overlapped 

frames) to 10 ms (without overlapping). The recognition rate 

results for various frame shift values are given in Fig. 3. 

In this case the highest recognition rate was obtained using 

7.5 ms frame shift for MFCC and LPCC analyses. The highest 

recognition rate for PLPC analysis was obtained using 10 ms 

frame shift. So the frame shift equal to 75-100 % of window 

length allowed us to obtain the highest rate. The overall 

improvement of recognition rate caused by frame shift 

variation did not exceed 1 %. 

For further study of frame shift we investigated recognition 

rate using maximal acceptable frame size values: 15 ms for 

PLP analysis, 20 ms for LPCC and MFCC analyses. Table I 

gives combined results of frame shift values giving the highest 

recognition rate for different frame size values (the frame shift 

values are expressed in terms of ratio to frame size). Here we 

can see the highest recognition rate obtained when using frame 

shift size equals to 75–100 % of the frame size. If the 

calculation speed is preferred the frame shift should be set to 

100 % of the frame size. 

Fig. 4 gives the overall improvement for all analysis 

techniques gained by changes of window length and frame 

shift size. 

As we can see the accuracy of PLPC has increased by 2.5 % 

and this was the highest improvement (in comparison with the 

case of 20 ms window length and 10 ms frame shift). The 

MFCC analysis was most robust to change of analysis 

parameters – the recognition rate improvement was only 

0.3 %. 

In our experiments we registered different recognition rates 

for different analysis types and speakers, that is the 

increase/decrease of frame size and shift had diverse results 

for particular speaker. This implies the speaker-dependent 

optimal values of frame size and shift. Thus future research 

ought to be directed to adapt analysis parameters to speaker 

characteristics. 

V.  DISCUSSION AND CONCLUSIONS 

The recognition rate dependence on analysis frame size and 

shift was investigated. The experimental results can be 

concluded: 

 Shorter analysis frame can improve the average speech 

recognition rate. Twice shortened analysis frame (from 

20 to 10 ms) gave us maximal recognition rate 

improvement by 1.2 %. The lowest average recognition 

rate was obtained for the window length of 22.5–30 ms. 

 Longer frame shift accelerates speech analysis process, 

reduces the amount of extracted features and can 

improve speech recognition rate. The biggest 

recognition rate improvement was achieved for frame 

shift varying from 75 to 100 % of the frame size.  

 The highest improvement of speech recognition rate 

(by 2.5 %) was achieved through variation of analysis 

parameters for PLP cepstral analysis. The MFCC 

analysis was the most robust for the analysis 

parameters variation. 

 Considering the average recognition results for female 

and male speakers separately, adaptive analysis 

parameter values should be investigated for future 

improvement. 
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