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Abstract - The cores of electrical machines are generally 

punched and laminated to reduce the eddy current losses. These 
manufacturing processes such as punching and cutting deform 
the electrical sheets and deteriorate its magnetic properties. 
Burrs are formed due to plastic deformation of electrical sheets. 
Burr formed due to punching on the edges of laminated sheets 
impairs the insulation of adjacent sheet and make random 
galvanic contacts during the pressing of stacked sheets. The effect 
of circulating current occurs if the burrs occur on the opposite 
edges of the stacks of laminated sheets and incase of bolted or 
wielded sheets, induced current return through it. This induced 
current causes the additional losses in electrical machine. The 
existence of surface current on the boundary between two 
insulated regions causes discontinuity of tangential component of 
magnetic field. Hence, based on this principle, the boundary layer 
model was developed to study the additional losses due to 
galvanic contacts formed by burred edges. The boundary layer 
model was then coupled with 2-D finite element vector potential 
formulation and compared with fine mesh layer model. Fine 
mesh layer model consists of finely space discretized 950028 
second order triangular elements. The losses were computed 
from two models and were obtained similar at 50 Hz. The 
developed boundary layer model can be further used in electrical 
machines to study additional losses due to galvanic contacts at 
the edges of stator cores. 
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I. INTRODUCTION 

Electrical steel sheets are the indispensable constituent in 
the construction of cores of electromagnetic devices. Sheets 
are rolled to their given thickness, and laminated to minimize 
the eddy current loss. Later, they are cut or punched into 
desired shape for electromagnetic device. Sheets are laminated 
or coated before they are cut or punched to ease the punching 
process and also to prevent the damage of cutting tools and 
sheet itself [1]. Punching and cutting induces internal 
mechanical stresses which deforms the sheets and deteriorates 
their magnetic properties. The behavior of the magnetic 
properties and iron loss under such stress is studied in [2] 
where the hysteresis loss was observed due to change in 
permeability. It was observed in [3] that an annealing process 
reduces iron losses by 50 % and produces a factor 3 change in 
permeability of test samples of laminated sheets. However, the 
cores of the electrical machines and transformers are not 
perfectly insulated from each other. The laminated sheets of 
electrical machines are subjected to many foreign particles 
during assembly and make galvanic contact between inter-
laminar sheets and makes thin conducting layer. However, 

manufacturing process such as punching also introduces burrs 
at the edges of electrical sheets and makes conducting layer 
and causes additional losses. The effect of punching has been 
widely researched in the scientific community. According to 
Schmidt [4], when cutting by punching, stress region can be 
from 0.35 mm up to 10 mm [5] from the cut edge and the 
deformed area can extend for about 0.3 mm due to plastic 
deformation [6]. It is studied that burr size of commercial 
material is less than 0.02 mm high in 0.28 mm thick sheet [7]. 
However, engineering society has agreed upon the average 
affected cut edge, having a width equal to or larger than the 
thickness of the lamination [8] and the ISO 13715 standard 
defines the edge of a work piece as burred if it has an 
overhang greater than zero [9].  

II. EFFECTS OF BURRS ON LAMINATED SHEETS 

A burr formed during punching of sheets has a strong 
impact on interlayer short circuits as well as on the cut edge 
properties. Burr formation occurs due to shearing during the 
separation of the metal by two blades. The series of the events 
occur when the moving blade gets in contact to the sheet and 
rolls over until reaching the fracture shear stress of the sheet 
[10], [11]. As the load continues to increase it initiates a crack 
which produces the rapid breakthrough involving a ductile 
fracture and formation of a burr as shown in Fig. 1 [12]. 
However, there are many de-burring techniques such as using 
electrochemical machining, abrasive flow machining or high 
pressure water jet but no single de-burring operation can 
accomplish 'burr free' conditions without having side effects 
[13]. 

 
Fig. 1. Burr formation. 
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Burrs formed at the edges of laminated sheet impair the 
insulation of adjacent sheet and make random galvanic 
contacts during pressing of stacked sheets. The effect of 
circulating eddy current occurs if burrs occur on opposite 
edges of the laminations and in case of bolted or welded 
sheets, induced current returns through these paths. These 
additional paths increase the loss and it is important to model 
such phenomena in order to identify the parameters which can 
minimize these effects. The effect of punching on magnetic 
properties is studied in [14] and [15] where the increment of 
hysteresis loss is up to 20-40% compared to guillotine cut and 
in [16] magneto-mechanical coupled FEM was proposed to 
model the effect. There are also few studies done regarding the 
modeling of inter-laminar short circuit losses using artificial 
burr contacts in [7], [17], [18], [19] and [20] where effect on 
permeability due to punching is assumed constant and 
randomness of burr contacts is not completely addressed. In 
[7] the experimental studies were done to measure the losses 
due to burr contacts. They drilled the laminated sheets to have 
the controllable artificial contacts. The contacts were varied by 
inserting conducting pins. They measured the loss on 
temperature rise principle. Temperatures were measured by 
using microprocessor controlled thermistor bridge. They 
concluded the increase of the loss due to burr contacts was up 
to 5 % of total loss. There are also analytical studies done in 
[21], [22], [23], [24], [25] and [26] to model thin conducting 
layers using finite element method. However, the conducting 
layers formed by burrs within the stacks are uncertain, since 
they are formed by a stochastic process which depends on a 
large number of parameters, such as the age of punching die, 
stacking pressure, short circuit's geometry, thickness of the 
insulating layer and the number of sheets [27], [28]. 

The conducting layer formed by the burred edges can be 
modeled with finite element method with a very fine mesh 
layer and usually adaptive mesh is used but the fine mesh 
layer may consist of degenerated element or very high number 
of elements. The degenerated elements may lead to the system 
of ill conditioned matrix and hence the alternative method of 
modeling the thin conducting layer is required. 

III. MATHEMATICAL MODELING AND METHODS 

A. Thin Boundary Layer Formulation 

Burr formed at the edges of electrical sheets deteriorates the 
insulation and makes galvanic contacts. The surface current on 
the contact edges of a laminated sheet causes the discontinuity 
of the tangential component of the magnetic field [29]. It can 
be written as  

 1 2 0
( ) = .

h
dx  n H H J  (1) 

It is assumed that the laminated sheets are parallel to the xy 
plane and the current density J is perpendicular to the plane 
and assumed constant in thin conducting layer. Under quasi-
static approximation, the current density of a slab shown in 
Fig. 2 is given by J=σE . 

 

 
Fig. 2. Thin slab. 

The current density is integrated along the conducting layer 
and surface current in terms of vector potential A=Azk is given 
by (1) where 2ࣇ,1ࣇ are the reluctivities of iron and air 
respectively.  

 1 2( ) = h
t

 
  


A

n H H . (2) 

The magnetic field can be expressed in terms of magnetic 
flux density using the material equation as 

  1 2 .h
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The magnetic vector potential A in 2D is in z direction and 
its gradient is written as in (7). Normal component can be 
decomposed in the two dimensional plane by writing as 
n=nxi+nyj. Cross product of the vectors in (3) can be written as  
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The surface current in terms of magnetic vector potential 
can be written as 
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The magnetic flux density is the curl of magnetic vector 
potential and in two dimensional study, it can be expressed as  
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The magnetic flux density can be expressed in terms of 
gradient	of	magnetic	vector	potential	with the introduction 
of matrix term. It can be written as 

 
0 1

.
1 0 zA

 
   

B  (8) 

The material equation B=µH is used. Equation (8) is 
substituted in material equation. The introduced matrix is 
inversed and ࣇસAz	is	expressed	in	terms	of	H	as	in	ሺ9ሻ.	

The expression ࣇસAz.n can be graphically represented as 
the tangential component of magnetic field in Fig. 3.  
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B. Coupling of Boundary Layer Model into 2D Model 

Maxwell equations in terms of magnetic vector potential is 
solved in two non conducting regions using Green’s theorem 
and weighted residual method. The weight function vanishes 
along the Dirichlet boundaries Γdir and Γdair. The presence of 
surface current along the boundaries Γia and Γai causes the 
discontinuity of tangential magnetic field. Hence, the coupling 
of the boundary layer model into 2D finite element of two 
insulated iron and air region as shown in Fig. 4 is given by  

 
1 2=

= 0.

z z
ir air

z

ia

R A wd A wd

A
w h

t

 



 



     






 

�
 (10) 

Equation (10) was space discretized by replacing weight 
function w with shape functions of active nodes. The coupling 
of boundary layer model to 2D finite element method results 
in the system of equations 

 a a = 0 S T  (11) 

where, 
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The system of equations is solved as 2ࣇ=ࣇ (constant for air) 
and 1ࣇ=ࣇ (linear insulated iron region). S is the stiffness 
matrix and T is the damping matrix which accounts for time 
dependent terms. The coupling of the boundary layer model in 
existing system of equations results in an additional term in 
time dependent matrices. It is important to know that the 
additional term in Tij is the line integration along the material 
boundaries and shape functions Ni and Nj corresponds to only 
nodes that belong to the material boundaries.  

 
 
 
 

 
Fig. 3. Graphical representation of ࣇસAz.n as tangential component of H . 

Fig. 4. Insulated iron and air region. 

IV. RESULTS 

The derived mathematical boundary layer model is given by 
(1). It is compared with fine mesh model in electrical UI 
sheets in finite element software COMSOL. In fine mesh layer 
model, thin conducting region is finely space discretized. It 
consisted of 950028 quadratic triangular elements as shown in 
Fig. 5. 

The two models are compared with same mesh in the 
frequency domain, changing frequency from 50 Hz to 150 Hz 
and parametrizing thickness of conducting layer from 0.05 
mm to 0.2 mm. The air gap flux density of two different 
models, obtained from COMSOL, was compared. The 
difference in the air gap flux density between the U and I sheet 
in different frequencies and conducting width can be seen in 
Fig. 6 and Fig. 7. 

The galvanic contacts along the edges of UI sheets can be 
modeled by assigning constant conductivity of iron at the 
edges. The losses due to galvanic contacts were computed 
from both models. The losses obtained from two models 
behave very closely at 50 Hz and 100 Hz. 
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Fig. 5. Fine mesh layer of UI model. 

 
Fig. 6. Air gap flux density of boundary layer model. 

 

The losses increased with frequency increasing and this 
behaviour can be seen in Fig. 8. However, at high frequency 
and at conducting width of 0.15 mm, the losses start to 
decrease, probably because of shielding effect. In fine layer 
model, at high frequency the flux cannot penetrate near the 
skin depth and hence the losses start to decrease. However, 
boundary layer model is less affected by skin depth. It can be 
seen from Fig. 8 that the two models behave closely in loss 
computation. 

The developed boundary layer model has a wide 
application. It can also be used to model conducting layer that 
is used in high speed permanent magnet machines to lower 
eddy current loss and to damp mechanical oscillations and 
screening of an inverse field [30]. However, the process of 
burr formation and the contacts of sheets on the edges of 
laminated sheet is random in nature and hence requires 
stochastic approach to the solution. Uncertainities in magnetic 
vector potential can be quantified as in [31]. The random 
distribution of conductivity and burr width can be obtained by 
measuring the resistivity along the edges of numerous samples 
of sheets as a function of stacking pressure [32]. Thus, 
obtained experimental data can be validated using an 
appropriate stochastic model with the aid of statistical tools. 

 
Fig. 7. Air gap flux density of fine layer model. 

 
Fig. 8. Comparison of the two models. 
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V. CONCLUSION 

In conclusion, the boundary layer model can compute the 
loss similar to fine mesh layer model at 50 Hz and at burr 
width less than 0.2 mm. However, boundary layer model 
predicts more losses than fine mesh model at 150 Hz 
frequency and 0.2 mm burr width. The maximum difference 
between the losses computed from these two  model was 19 
%. The boundary layer model provides the mesh free solution 
at the thin conducting region. This model can be used to study 
the additional losses due to interlaminar galvanic contacts in 
37 kW induction machine considering the random 
conductivity. This application will be presented in the future 
paper. 

ACKNOWLEDGMENT 

The authors would like to thank CLEEN  / Future 
Combustion Engine Power Plants (FCEP) research 
programme for their financial support. 

REFERENCES 

[1]  D. M. Lindenmo and A. Coombs, ”Advantages, properties and types of 
coatings on non-oriented electrical steels,” Journal of Magnetism and 
Magnetic Materials, Vol. 215-216, pp. 79-82, 2000.  

[2]  A. Kedous-Lebouc, B. Cornut, J. Perrier, P. Manfe  and T. Chevalier, 
”Punching influence on magnetic properties of the stator teeth of an 
induction motor,” Journal of Magnetism and Magnetic Materials, Vol. 
254-255, pp. 124-126, 2003.  

[3]  A. Boglietti, A. Cavagnino, L. Ferraris and  M. Lazzari, ”The annealing 
influence onto the magnetic and energetic properties in soft magnetic 
material after punching process,” IEEE Electric Machines and Drives 
Conference, 2003.  

[4]  K. Schmidt, ”Influence of punching on the magentic properties of 
electric steel with 1% silicon,” Journal of Magnetism and magnetic 
materials, vol. 2, no 1-3, pp. 136-150, December 1975.  

[5]  A. Moses, N. Derebasi, G. Loisos and A. Schoppa, ”Aspects of the cut 
edge effect stress on the power loss and flux density distribution in 
electrical steel sheets,” Journal of Magnetism and Magnetic Materials, 
Vol.215-216, pp. 690-692, 2000.  

[6]  M. Emura, F. Landgraf, W. Ross and J. Barreta, ”The influence of 
cutting technique on the magnetic properties of steel,” Journal of 
Magnetism and Magnetic materials, Vol.254-255, pp. 358-360, 2003.  

[7]  A. Moses and M. Aimoniotis, ”Effects of Artifical Edge burrs on the 
properties of a Model transformer core,” Physica Scripta, vol. 39, pp. 
391-393, 1989.  

[8]  P. Beckley, Electrical steels for rotating machines, The Institution of 
Engineering and Technology, London, 2002.  

[9]  Technical drawings-Edges of undefined shape Vocabulary and 
indications, International Standard ISO 13715:2000.  

[10] S. L. Ko and A. D. Dornfeld, ”A study on burr formation mechansim,” 
Transaction of the ASME Journal of Engineering Material and 
Technology, vol. 113, no 1, pp. 75-87, 1991.  

[11] L. K. Gillespie and P. T. Blotter, ”The formation and properties of 
machining burrs,” Journal of Engineering for Industry, vol. 98, no 1, pp. 
66-74, 1976.  

[12] P. Baudouin, M. Wulf, L. Kestens and Y. Houbaert, ”The effect of the 
guillotine clearance on the magnetic properties of electrical steels,” 
Journal of Magnetism and Magnetic Materials, vol. 256, pp. 32-40, 
2003.  

[13] J. Aurich, D. Dornfeld, P. Arrazola, V. Franke, L. Leitz  and S. Min, 
”Burrs-analysis, control and removal,” CIRP Annuals-Manufacturing 
technology, vol. 58, no 2, pp. 519-542, 2009.  

[14] A. Boglietti, A. Cavagnino, M. Lazzari and M. Pastorelli, ”Effect of 
punch process on the magnetic and energetic properties of soft magnetic 

material,” Electric machines and drives conference,IEMDC 2001, pp. 
396-399, 2001.  

[15] M. W. Arshad, T. Ryckebush, F. Magnussen, H. Lendenmann, J. 
Soulard, B. Eriksson  and B. Malmros, ”Incorporating lamination 
processing and component manufacturing in electrical machine tools,”
Industry Applications Conference, 2007. 42nd IAS Annual meeting, 
2007.  

[16] F. Ossart, E. Hug, O. Hubert, C. Buvat and R. Billardon, ”Effect of 
punching on electrical steels: Experimental and numerical,” IEEE 
Transactions on Magnetics, vol. 36, no 5, pp. 3137-3140, 2000.  

[17] R. Mazurek, H. Hamzehbahmani, A. J. Moses, P. I. Anderson, F. J. 
Anayi  and T. Belgrand, ”Effect of Artificial Burrs on Local Power Loss 
in a Three-Phase Transformer Core,” IEEE Transactions on Magnetics, 
vol. 48, pp. 1653 -1656, 2012.  

[18] R. Mazurek, P. Marketos, A. Moses and N. J. Vincent, ”Effect of artifical 
burrs on the total power loss of a three phase transformer core,” IEEE 
transaction on magnetics, vol. 46, pp. 638-641, 2010.  

[19] R. Jean-Yves, V. Emmanuel, H. Thomas, B. Abdelkader and D. Jean-
Pierre, ”Electromagnetic modelling of short circuited coreplates”.  

[20] S. B. Lee, G. Kliman, M. Shah, W. Mall, N. Nair and R. Lusted, 
”Advanced technique for detecting interlaminar stator core faults in large 
electric machines,” IEEE transaction on Industry application, vol. 41, 
pp. 1185-1193, 2005.  

[21] H. Igarashi, A. Kost and T. Honma, ”Impedance boundary condition for 
vector potentials on thin layers and its application to integral equations,” 
The European Physical Journal Applied Physics, vol. 1, no 1, pp. 103-
109, 1998.  

[22] C. Brebbia, Topics in Boundary Element research, Springer Verlag 
Berlin, 1989.  

[23] L. Krahenbuhl  and D. Muller, ”Thin layers in electrical engineering 
example of shell models in analysing eddy currents by boundary and 
finite element methods,” IEEE transaction on Magnetics, vol. 29, pp. 
1450-1455, 1993.  

[24] C. Geuzaine, P. Dular  and  W. Legros, ”Dual formulations for the 
modeling of thin electromagnetic shells using edfe elements,” IEEE 
transactions on Magnetics, vol. 36, pp. 799-803, 2000.  

[25] J. Gyselinck, R. Sabariego, P. Dular and C. Geuzaine, ”Time domain 
finite element modeling of thin electromagnetic shells,” IEEE 
transaction on Magnetics, vol. 44, pp. 742-745, 2008.  

[26] R. Sabariego, C. Geuzaine, P. Dular and J. Gyselinck, ”Non-linear time 
domain finite element modeling of thin electromagnetic shells,” IEEE 
transaction on magnetics, vol. 45, pp. 976-979, 2009.  

[27] C. A. Schulz, S. Duchesne, D. Roger  and J. N. Vincent, ”Capacitive 
short circuit detection in transformer core laminations,” Journal of 
Magnetism and Magnetic Materials, vol. 320, no 20, pp. 911-914, 2008. 

[28] G. Iaccarino, Uncertainty quantification in computation science, 
Department of Mechanical Engineering Stanford University, 2011.  

[29] J. Luomi, Finite element methods for electrical machines, Goteborg: 
Chalmers University of Technology, Department of Electrical Machine 
and Power electronics, 1993.  

[30] J. Van der veen, L. Offringa and A. Vandenput, ”Minimising rotor losses 
in high speed high power permanent magnet synchronous generators 
with rectifier load,” Electric Power Applications, IEEE Proceedings, vol. 
144, pp. 331-337, 1997.  

[31] K. Beddek, Y. L. Menach, S. Clenet and O. Moreau, ”3-D Stochastic 
spectral finite element method in static electromagnetism using vector 
potential formulation,” IEEE transaction om magnetics, vol. 47, no 5, pp. 
1250-1252, 2011.  

[32] E. D. Taylor, ”The measurement of interlaminar resistance of varnish 
insulated silicon steel sheet for large electrical machines,” Proceedings 
of IEE-part II : Power engineering, vol. 98, no 63, pp. 377-385, 1951.  

 



Electrical, Control and Communication Engineering  
 

2013 / 3 ____________________________________________________________________________________________________________  

36 
 

Sahas Bikram Shah was born in 
Kathmandu, Nepal in 1987. He received the 
B.Sc. degree in electrical and electronics 
engineering from Kathmandu University, Nepal 
in 2010 and the M.Sc. (Tech.) from Aalto 
University, Espoo, Finland in 2013. His main 
study includes numerical modeling in electrical 
machines and electromechanics. 

He is currently a doctoral student at the 
Department of Electrical Engineering in Aalto 
University School of Electrical Engineering. His 
research includes numerical modeling of iron 
losses in electrical machines and stochastic 

analysis of additional losses in electric machines. 
E-mail: sahas.bikram.shah@aalto.fi 

Postal address: Aalto University, School of Science and Technology, 
Department of Electrical Engineering, P.O.Box 13000, FI-00076 Aalto, 
Finland. 

 
Paavo Rasilo was born in Äänekoski, 

Finland in 1983. He received his M.Sc. (Tech.) 
and D.Sc. (Tech.) degrees from Helsinki 
University of Technology (currently Aalto 
University) and Aalto University, Espoo, 
Finland in 2008 and 2012, respectively. 

He is currently a post-doctoral researcher at 
the Department of Electrical Engineering in 
Aalto University School of Electrical 
Engineering. His research interests deal with 
numerical modeling of electrical machines as 
well as power losses and magnetomechanical 
effects in soft magnetic materials. 

Postal address: Aalto University, School of Science and Technology, 
Department of Electrical Engineering, P.O.Box 13000, FI-00076 Aalto, 
Finland. 

Anouar Belahcen was born in Morocco, in 
1963. He received the B.Sc. degree in physics 
from the University Sidi Mohamed Ben 
Abdellah, Fes, Morocco, in 1988 and the M.Sc. 
(Tech.), LisTech, and Doctorate degrees from 
Helsinki University of Technorking as Professor 
in the field of coupled problems and material 
modeling at the Department of Electrical 
Engineering, Aalto University, Finland. Since 
2011 he is Professor of electrical machines at 
Tallinn University of Technology, Estonia and 
in 2013 he became Professor at Aalto 
University. His research interests deal with the 

numerical modeling of electrical machines, especially magnetic material 
modeling, coupled magnetic and mechanical problems, magnetic forces, and 
magnetostriction. 

Postal address: Aalto University, School of Science and Technology, 
Department of Electrical Engineering, P.O.Box 13000, FI-00076 Aalto, 
Finland. 

 
Antero Arkkio was born in Vehkalahti, 

Finland in 1955. He received his M.Sc. (Tech.) 
and D.Sc. (Tech.) degrees from Helsinki 
University of Technology in 1980 and 1988. 

Currently he is a Professor of Electrical 
Engineering at Aalto University. His research 
interests deal with modeling, design, and 
measurement of electrical machines. 

Postal address: Aalto University, School of 
Science and Technology, Department of 
Electrical Engineering, P.O.Box 13000,            
FI-00076 Aalto, Finland. 

 
 

 


