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Abstract – In electromagnetic problems, the problem geometry 

may not always be exactly known. One example of such a case is 

a rotating machine with random-wound windings. While spectral 

stochastic finite element methods have been used to solve 

statistical electromagnetic problems such as this, their use has 

been mainly limited to problems with uncertainties in material 

parameters only. This paper presents a simple method to solve 

both static and time-harmonic magnetic field problems with 

source currents in random positions. By using an indicator 

function, the geometric uncertainties are effectively reduced to 

material uncertainties, and the problem can be solved using the 

established spectral stochastic procedures. The proposed method 

is used to solve a demonstrative single-conductor problem, and 

the results are compared to the Monte Carlo method. Based on 

these simulations, the method appears to yield accurate mean 

values and variances both for the vector potential and current, 

converging close to the results obtained by time-consuming 

Monte Carlo analysis. However, further study may be needed to 

use the method for more complicated multi-conductor problems 

and to reduce the sensitivity of the method on the mesh used. 

 

Keywords – Eddy currents; Finite element analysis; Stochastic 

systems; Random variables. 

 

I. INTRODUCTION 

To design efficient electrical machines, methods are needed 

to accurately solve two-dimensional electromagnetic 

problems. Finite element methods do fill this requirement, but 

have mostly been used to solve purely deterministic problems 

with exactly known parameters. However, a designer may 

often encounter cases where one or more problem parameter is 

random and not exactly known. For instance, the permeability 

of iron or other material parameters may be changed due to 

manufacture [1]. The exact problem geometry can also be 

uncertain. For example, in random-wound stator windings, the 

exact positions of the conductors are unknown, leading to 

circulating current losses that are very difficult to predict [2]. 

Indeed, most authors have chosen to assume a particular 

deterministic conductor transposition before loss calculation 

[3] – [6].  

Different Monte Carlo (MC) methods can be used to solve 

stochastic problems like these. In these methods, a 

deterministic problem is solved repeatedly with randomly 

assigned parameters. The stochastic behavior of the solution is 

then approximated from the obtained deterministic solutions. 

While this method is easy to understand and implement, it 

suffers from very long computation times due to the large 

number of simulations needed. [7] 

One solution to long computation times is the spectral 

stochastic finite element method (ssFEM). With ssFEM, it is 

sufficient to solve a larger deterministic problem once. Indeed, 

the method has been used to solve different stochastic 

electrostatic and electromagnetic problems, although mainly 

with uncertain material parameters rather than an uncertain 

geometry. [8] – [10] 

Some attempts to use the spectral stochastic FEM also with 

geometrically uncertain problems have been made. A method 

based on a random domain mapping was presented in [11] – 

[12]. While the method appears suitable for a wide range of 

problems, it is relatively complicated. Moreover, a specific 

mapping has to be found for each problem. Finally, its 

suitability for problems with large or numerous variations in 

geometry has not yet been demonstrated. 

This paper presents a simpler method to solve 

electromagnetic problems with current sources on random 

positions. The uncertainties in the geometry are expressed 

with an integer-valued indicator function, effectively reducing 

the problem to one with only material uncertainties. A solution 

to the electromagnetic problem is then obtained with the 

typical spectral stochastic solution procedure. The proposed 

method is then used to solve a simplified problem of a 

conductor in a slot at a random location. Problems both with 

and without eddy currents are solved. 

II. THEORY 

The proposed spectral stochastic finite element method is 

derived in this section. First, the necessary theory of the 

polynomial chaos expansion is briefly presented, based on [7] 

and [13]. Derivation of the actual solution method follows 

thereafter. 

A. Polynomial Chaos Expansion 

The polynomial chaos expansion is a method to present a 

random variable as a sum of functionals of other random 

variables. It is similar for instance to the Fourier 

transformation, performed in probability space instead of 

frequency domain. In a one-dimensional case, the method can 

be presented as follows.  

Let Y be a random variable. The polynomial chaos 

expansion of Y is then 

     



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j
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0

.  (1) 

Here, X is a random variable with a known probability density 

function f(x) in the interval [a,b]. P is the order of the 

expansion, and the yj terms are the expansion coefficients. 
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The Ψj terms are jth order polynomials of X, typically called 

polynomial chaoses. They are normally chosen to be 

orthogonal with respect to the expectation 
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For instance, if X follows the normal distribution, Hermite 

polynomials satisfy this orthogonality requirement. 

The coefficients yj can then be calculated as follows. Let G 

be a mapping from X to Y. In other words, G must satisfy the 

equality 

      .G   XY  (3) 

With this definition, the coefficients can then be calculated 

with the Galerkin projection [14]  
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In a multi-dimensional case, the probability space is 

spanned by several uncorrelated random variables X1, X2, …, 

XM. In this case, the polynomial chaoses can be obtained as 

products of one-dimensional chaoses of one variable, in other 

words as 

 
 

      .
,,

221
21

21

M

Mi

XXX

XXX

iii 







 

(5)
 

The orders α must fulfil the criterion 

 .

1

iP

M

k

i
k 



  (6) 

Naturally, the orders have to be chosen so that a linearly 

independent set of chaoses is obtained. In other words, no 

repetition in the products can take place. The expectation (2) 

can be generalized to multiple dimensions in a similar fashion.  

B. Static Magnetic Field Problem in a Deterministic Case 

Suppose that a solution to a linear static two-dimensional 

magnetic field problem on a domain Ω is sought. Ω is 

assumed to lie in the xy-plane. By starting from the vector 

potential formulation of the Maxwell’s equations 
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the following equation can be obtained 

    .)()( xxx JA    (8) 

In the equations, x = [x y]T is the position vector. H and B are 

the magnetic field strength and flux density vectors in the 

problem plane. J is the magnitude of the source current density 

perpendicular to the problem domain. A is the amplitude of the 

vector potential, and ν is the magnetic reluctivity.  

For simplicity, Ω can be assumed to cover the entire 

problem region, so that no flux leaves the area. In this case, 

the weak form of the problem can be obtained by multiplying 

both sides of (8) with a test function g and integrating by parts, 

which yields 
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In a more general case, a boundary term would also have to be 

considered. In this case, however, the vector potential on the 

boundary can be set to be zero, making the associated integral 

term disappear.  

C. Spectral Stochastic Finite Element Formulation with 

Geometric Uncertainty 

Equation (8) can be solved with the finite element method. 

In the deterministic case, the vector potential A is 

approximated with a weighted sum of shape functions. 
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The constant coefficients Ai are then solved with a suitable 

method. [14] 

However, if there are uncertainties in the problem, each of 

the coefficients in (10) will be a random variable Ai(θ) rather 

than a constant. In the spectral stochastic finite element 

method, the coefficients Ai are written as their respective 

polynomial chaos expansions 
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Here, X can either be a single random variable, or a vector of 

uncorrelated random variables, depending on the problem to 

be solved. With this formulation, the remaining task is now to 

solve the coefficients Aij. This subject will be shortly dealt 

with. 

Before that, suppose that the source current density in (8) is 

due to a single conductor, the position of which is not exactly 

known. In other words, it is assumed that the current density J 

gets a constant, nonzero value on a random subdomain Ωθ, and 

is zero everywhere else. This situation can be expressed as 

   .,D)( 0  XJJ xx   (12) 

Here, Dθ is an indicator function that gets a value of 1 if x 

belongs to the random domain Ωθ, and 0 otherwise. For 

simplicity, it has been assumed that the subdomain Ωθ, and by 

extension Dθ, can be written with the random variable X. For 

example, for a circular conductor with a radius of rc and its 

center at X = [X1 X2]
T, Dθ would be 
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With these formulations, the original problem can finally be 

solved. Dependencies on x and θ will be dropped for clarity. 

By choosing 

 n
qg   (14) 
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as the test function, and by substituting (11) and (12) back to 

(8), the following equality is obtained 
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This is not yet a very useful form, since both sides of the 

equation are still random variables. By taking an expectation 

of the both sides, the following form is obtained after some 

simple reordering 
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Obviously, this equality is purely deterministic, i.e. there is no 

randomness. Therefore, it can be solved with simple linear 

algebra. 

The term on the right-hand side might be difficult to 

calculate analytically, since the Dθ term is a function of both 

the position x and the random variable X. However, most 

numerical methods would approximate the integral as a finite 

sum 
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The points xk are the summation points specific to the 

integration method used. In this case, the expectation only has 

to be calculated for specific values of x. This should pose no 

problems. 

After these considerations, the problem can be easily 

formulated as a matrix equation. By fixing the values of q and 

n in (16), the following equality is obtained 
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The summation with respect to j has been dropped since the 

expectation term will be zero for all j ≠  q due to the 

orthogonality of Ψj. By letting n in (18) run from 1 to N, the 

following matrix equation is obtained 

 .qqq
FAS   (19) 

Here, Fq is the load vector with elements 

   .d)E(D
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Similarly, Aq is the vector of unknowns with elements 

   .iqi
q AA  (21) 

Finally, the elements of the stiffness matrix are 
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It can be seen that each order of the polynomial chaos 

expansion of A forms its own system of N equations, with no 

coupling between the systems of different order. Due to this 

property, the solution to the whole problem can be obtained by 

solving P+1 linear systems of N equations, rather than one 

system of (P+1)×N equations. Furthermore, it can be seen that 

the matrix Sq is simply the stiffness matrix of the deterministic 

finite element method [14], multiplied with the expectation 

term. These factors considerably simplify the actual solution 

process, and decrease the necessary computation time. 

D. ssFEM Formulation in a Time-Harmonic Case 

If the conductor is connected to an AC voltage source, eddy 

currents induced in the conductor will change the governing 

equations slightly. In a time-harmonic deterministic case with 

sinusoidally varying variables, the problem can be expressed 

as 
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where ω is the supply frequency, σ is the conductivity, U is the 

supply voltage and l is the effective length of the problem 

domain in the z-direction. [15] The second term is the induced 

eddy current density due to the time-varying vector potential. 

The right-hand side term is the non-eddy AC-current density 

due to the source voltage. 

In a stochastic case, also the conductivity and the voltage 

will be random variables, due to the unknown conductor 

location. By assuming that the conductivity is constant over 

the conductor area and zero elsewhere, and that a constant 

voltage is applied over the ends of the conductor, the 

following two substitutions can be made in (23) 
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In other words, the conductivity and the source voltage can be 

expressed with the same stochastic indicator function defined 

earlier. By again using 

 n
qg   (25) 

as the test function, the following block matrix equation can 

be obtained 
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The elements of the block matrices Sq are as defined before in 

(22). They do not contribute outside the block diagonal due to 
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the orthogonality of the polynomial chaoses, which renders the 

expectation in (22) zero elsewhere. 

The eddy current matrices Se are due to the eddy current 

term of (23), and have the elements 

     .dE
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Fig. 1. The problem geometry illustrated.  

In general, the eddy current matrices can be nonzero 

anywhere, depending on the indicator function and the 

polynomial chaos basis used. 

The vectors of unknowns Aq are also as before, but the load 

vectors Fq are not. Instead, they have the elements 

     .dE
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This time, the different-order coefficients Aq are generally 

coupled to each other by the eddy current matrices. Therefore, 

the problem cannot be split into smaller subproblems 

anymore. Instead, one large problem with (P+1)×N variables 

has to be solved. This can present a considerable increase in 

computation time compared to the static case. 

E. Interpreting the Results 

Once the matrix equations have been solved, statistical 

behaviour of the vector potential can be easily calculated. For 

instance, the mean value of A at each node i can be calculated 

with 
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Higher order terms have been dropped from the expression 

because for all j ≥ 0 it holds that 

     ,0EE 0  jj c  (30) 

where c is some scalar, due to the orthogonality of the 

chaoses. Similarly, the variance of the vector potential can be 

obtained from 
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Fig. 2. The mean value of the vector potential at (x, 0.05) obtained with the 
Monte-Carlo method, the proposed ssFEM method and the analytical 

approximation. 

In the final form, the zero-order term has been dropped since 

     .EE
2

0
2
0   (32) 

Similarly, most of the expectation terms have vanished due to 

the orthogonality of the polynomial chaoses.  

Similar formulae can be written for higher moments as well, 

should it be desired. Indeed, one of the main benefits of the 

spectral stochastic FEM is the easy calculation of variances 

and higher moments, compared to for instance the Monte 

Carlo method [7]. 

III. SIMULATION RESULTS 

A simplified problem geometry was chosen to be simulated 

both with the proposed stochastic finite element formulation 

and with the Monte Carlo method. Both the cases with and 

without eddy currents were tested. The results were then 

compared to each other, as well as analytically obtained values 

in the case with no eddy currents. 

A. Conductor in a Slot with Constant Current Density 

A very simple geometry, shown in Fig 1 was selected to test 

the proposed method without eddy currents. The problem 

domain consisted of a 0.1 m × 0.05 m conductor in a slot. The 

x-position of the conductor’s center point was chosen to be 

random, distributed uniformly between [0.09, 1.01]. The iron 

parts were assumed to be linear, with a relative permeability of 

1000. The domain was then discretized into 2048 first-order 

elements with 1089 nodes. First-order shape functions were 

used. The polynomial chaos expansion of the vector potential 
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was then solved with the proposed method. Hermite 

polynomials were used as the bases of the polynomial chaos. 

Two methods were used for verification. Firstly, numerous 

Monte Carlo simulations were performed with the 

deterministic finite-element method with the conductor in a 

randomly selected position in each case. Secondly, an 

approximate expression for the vector potential in the slot was 

derived. With this method, it was assumed that the iron parts 
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Fig. 3. Variances at (x, 0.05) obtained with different Monte-Carlo simulations, 

ssFEM and analytically. 

had an infinite permeability and that the flux travelled purely 

in the y-direction in the slot. 

Fig 2 shows the mean values of the vector potential in the 

centre of the slot, along the line y = 0.05 m. The solid line 

shows the results obtained with 10 Monte Carlo simulations. 

The circles show the results from the proposed ssFEM 

method, while the analytical solutions are marked with the 

crosses. A tenth-order polynomial expansion was used with 

ssFEM. 

It can be seen that all three methods produce very similar 

results. The ability of the Monte Carlo method to produce such 

accurate results with only ten simulations is slightly 

surprising. Nevertheless, with the proposed stochastic finite 

element method it would have been sufficient to limit the 

approximation to mean values only, i.e. set P to 0, and the 

same result would have been obtained. Still, in this case the 

Monte Carlo method appears to be a very tempting competitor 

to the more complex ssFEM. 

More differences come about with variance calculation. Fig 3 

shows the variances of the vector potential along the same 

line, obtained with the three described methods. The three 

different lines show the results obtained with 10, 100 and 1000 

Monte Carlo runs, respectively. Circles again mark the ssFEM 

results obtained with P = 10, while analytical results are 

plotted with the crosses once again. 

This time, much clearer differences between the results can 

be seen. Also here, the ssFEM and analytical results are 

reasonably close to each other. However, the variance 

obtained with 10 Monte Carlo runs is nowhere near the other 

two methods. With 100 runs, a good approximation is 

obtained, although the again-diverging result from 1000 

calculations suggests this was due to chance only. Indeed, it 

was observed that the Monte Carlo method converged near the 

ssFEM and analytical results only after 10 000 simulations or 

more. 

This slow convergence of the variance clearly signifies the 

benefits of the spectral stochastic FEM against the Monte 

Carlo method. While relatively good approximations of the 

mean solution might easily be obtained with the Monte Carlo  

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

1

2

3

4

x 10
-13

x (m)

V
a

r(
A

)

 

 

P=1

P=10

Analytical

 

Fig. 4. Variance convergence with ssFEM. 

method, this is often not the case for variances, let alone any 

higher moments. Instead, a lot of repeated simulations are 

usually necessary for a reliable result. By contrast, with the 

ssFEM it is sufficient to solve one larger problem once. 

It may also be of interest to see the convergence of ssFEM-

calculated variances as the order of approximation P is 

increased. For this purpose, Fig 4 shows three approximated 

variances along the same y = 0.05 line as previously. 

Analytical results are marked with the crosses, while the two 

lines show the ssFEM results. The dotted line shows the 

variance obtained with a first-order polynomial chaos 

expansion, while the solid line shows the result with P = 10. It 

can be seen that in this case, even a first order expansion 

yields relatively good results. Moreover, a large increase in the 

order of approximation does not yield any significant 

additional improvement in accuracy. 

B. Conductor in a Slot with Eddy Currents 

The same problem geometry was simulated again, only this 

time eddy currents were allowed to flow in the conductor. 

Furthermore, the conductor was allowed to be anywhere 

between the slot bottom and the slot opening.  

 Uniform conductor position distribution in the x-direction 

was again used. A supply voltage of 10 V per one meter of 

conductor length was used, and the supply frequency was set 

to 50 Hz. The conductor was chosen to be made of copper. 

These parameters were chosen mainly for illustrative 

purposes, e.g. to obtain a reasonable balance between 

conductor inductance and resistance. Legendre polynomials 

were used with the chaos expansion. 
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Fig. 5. Mean vector potential (eddy current case) at (x, 0.05) obtained with the 

Monte Carlo method and with ssFEM. 
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Fig. 6. Variance of the vector potential at (x, 0.05) obtained with the Monte 
Carlo method and ssFEM. 

With this problem, only the ssFEM and the Monte Carlo 

method were chosen to be compared, mainly due to the 

difficulty of obtaining analytical solutions to eddy current 

problems. Fig 5 shows the expected absolute values of the 

vector potential along the same (x, 0.05) line as before. Monte 

Carlo results from 1000 simulations are shown with the solid 

line, while the circles show the ssFEM results with P = 5. 

Again, a very good agreement can be observed between the 

different methods.  

Although this is not visible in the figure, additional 

simulations revealed that very similar results could also be 

obtained much faster, i.e. with a smaller number of Monte 

Carlo runs, or with a smaller order of approximation P in the 

ssFEM. In other words, accurate estimates for the mean values 

were easy to obtain also in this case. 

Fig 6 shows the variances of the vector potential along the 

same line. Again, Monte Carlo results are marked with the 

solid line, while the circles denote results by ssFEM. This 

time, more differences can be observed, both near the peak 

and also around x = 0.05. In general, the Monte Carlo method 

seems to predict lower variances than the stochastic finite 

element method does. However, it cannot be deduced from the 

results whether this due to inaccuracies in the ssFEM, limited 

convergence of the Monte Carlo method, or both. 

Nevertheless, a reasonable agreement has indeed been 

obtained in this case as well. 

Besides the values of the vector potential, also the induced 

eddy currents may be of interest. Therefore, effective values of 

the total induced current were calculated with the expression  
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Fig. 7. Mean values of the total induced eddy currents calculated with the 

Monte Carlo method and with ssFEM. 
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and the results were then plotted in Fig 7. The solid line shows 

the convergence of the induced current as a function of the 

number of Monte Carlo simulations performed. The dotted 

horizontal line shows the result from the single ssFEM 

solution. It can be seen that more than 400 Monte Carlo 

simulations are necessary to obtain a reasonable agreement 

between the two methods. Even after 1000 iterations, the 

Monte Carlo method has yet to fully converge, i.e. there are 

still some visible fluctuations.  

Indeed, in this case the stochastic finite element method 

appears to be much faster even for mean value calculation, 

instead of only variances like was the case in the previous 

problem. This change in behaviour is probably caused by the 

more sensitive coupling between the inducing vector potential 

and the induced current density. 

 Because of this interaction, any inaccuracy in either of these 

quantities will cause inaccuracies in the other. In the earlier 

simulation, the current density was fixed and this interaction 

therefore missing, which most probably explains the large 

difference in convergence speeds.  

 Finally, Fig 8 shows the convergence of the variance of the 

induced current as a function of the number of simulations. 

Again, the variance from ssFEM calculations is shown with 

the dotted line. 
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Fig. 8. Variances of the induced eddy currents calculated with the Monte Carlo 

method and with ssFEM. 

Surprisingly, this time the variance seems to converge faster 

than the mean value of Fig 7; after 500 simulations there are 

few fluctuations. A nice agreement is found between the two 

methods. However, based on some additional simulations, the 

fast variance convergence of the Monte Carlo method seems 

to have been due to chance only, and specific to this particular 

problem. With even slightly different problem parameters, the 

variance of the current converged slower than the mean value 

in a majority of cases. 

C. Observed Limitations 

While solving the example problem with a constant current 

density was very straightforward, some difficulties were 

encountered in the eddy current case. Apparently, the eddy 

current problem is to be relatively sensitive to the mesh used. 

Indeed, large differences were observed between the Monte 

Carlo method and the proposed ssFEM with a coarse mesh. 

This phenomenon is due to a coarse mesh failing to pick up 

more subtle variations in the conductor position. Further study 

is required to determine which method actually gives more 

realistic result in these problematic cases.  

By using a mesh with a relatively fine division in the  

x-direction over the slot area, the differences could be 

minimized. In the example problem with eddy currents, the 

slot area was divided into 80 slices and meshed accordingly to 

obtain the best possible results. 

D. On convergence speeds 

It must be noted the number of Monte Carlo simulations 

necessary to match the accuracy of the ssFEM method may be 

slightly misleading, since there are (P+1) times more 

unknowns in the spectral method. Nevertheless, in all the 

example problems good solutions were obtained with  

P = 3…5. Since a non-optimized solution of a linear system is 

a O(n3) operation, this corresponds to a 64…216-fold increase 

in computation times. Obviously, this will still be significantly 

faster than performing ≥ 1000 Monte Carlo runs, as was 

necessary in most cases. Furthermore, the stiffness matrices of 

the stochastic systems will be relatively sparse, so faster 

solutions could most probably be obtained by iterative means. 

IV. CONCLUSIONS 

Stochastic electromagnetic problems have usually been 

solved either with the Monte Carlo method or some stochastic 

finite element method. Of these alternatives, the Monte Carlo 

method usually requires a very large amount of computation 

time. The spectral stochastic finite element method is usually a 

faster alternative, but has until now been mainly used to solve 

problems with uncertainties in the material characteristics 

rather than the problem geometry.  

This paper proposes an indicator-function based method to 

solve two-dimensional electromagnetic problems with 

conductors on random locations. The conductor position is 

expressed with a stochastic indicator function that takes into 

account the uncertainty. The rest of the problem is then solved 

as with typical spectral stochastic methods. Equations of a 

single-conductor case both with and without eddy currents are 

presented in this paper. Generalizing the method for several 

conductors should be fairly trivial, provided that the 

conductors are in separate slots or otherwise cannot overlap. 

An overlapping case is a subject of the author’s further study. 

The proposed method could possibly be used also for other 

than electromagnetic problems, though this has not been 

demonstrated yet. 

The proposed method was used to solve a simple single-

conductor example case, both with and without eddy currents. 

Mean values and variances of the vector potential and the total 

induced eddy currents were calculated. The results were 

verified with the well-established Monte Carlo method, and 

also with a simple analytical method in the case with no eddy 

currents. A very good agreement was found in most cases, 

although there were some unexplained differences in the 

variance of the vector potential in the eddy current problem. 

Significantly faster solutions were observed with the 

proposed method compared to the Monte Carlo method. In 

many cases, the Monte Carlo method required several hundred 

simulations to converge properly. This seemed to be the case 

especially when calculating variances of the problem 

quantities. It is reasonable to assume that these differences in 

computation times would be compounded when calculating 

third or higher moments. 

The proposed method appears to be relatively sensitive to 

the meshing of the problem region, at least if the effects of 

eddy currents are included. The cause of this sensitivity 

remains unknown. Solving this limitation would require some 

further study. Nevertheless, it appears that good solutions can 

still be obtained without excessively fine meshes, provided 

that the mesh has been appropriately refined in the random 

regions of the problem domain. Since mesh-generation is in 

any case a highly problem-specific problem, this requirement 

cannot be considered a serious drawback. 

Generally, this paper stands as a demonstration that the 

spectral stochastic finite element method can easily be 

modified to solve problems with geometric uncertainties as 

well as material ones. In electrical engineering, one obvious 
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problem of such nature is the demonstrated conductor position 

case. However, the method could probably also be extended to 

other fields as well, such as modelling random structural 

deformations.  
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