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Abstract – A good transformer design satisfies certain 

functions and requirements. We can satisfy these requirements 

by various designs. The aim of the manufacturers is to find the 

most economic choice within the limitations imposed by the 

constraint functions, which are the combination of the design 

parameters resulting in the lowest cost unit. One of the earliest 

application of the Geometric Programming [GP] is the 

optimization of power transformers. The GP formalism has two 

main advantages. First the formalism guarantees that the 

obtained solution is the global minimum. Second the new solution 

methods can solve even large-scale GPs extremely efficiently and 

reliably. The design optimization program seeks a minimum 

capitalized cost solution by optimally setting the transformer’s 

geometrical and electrical parameters. The transformer’s 

capitalized cost chosen for object function, because it takes into 

consideration the manufacturing and the operational costs. This 

paper considers the optimization for three winding, three phase, 

core-form power transformers. This paper presents the 

implemented transformer cost optimization model and the 

optimization results. 
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I. INTRODUCTION 

A good transformer design satisfies certain functions and 

requirements such as transforming power from one voltage 

level to another without overheating or without damaging 

itself when a short-circuit current or a lightning strike occurs. 

We can satisfy these requirements by various designs. The aim 

of the manufacturers is to find the most economical choice 

within the limitations imposed by the constraint functions, 

which are the combination of the design parameters whose 

result is the lowest cost unit. This cost optimization falls into 

the most general category of the non-linear optimization 

methods. In this area, there are no algorithms or iteration 

schemes which guarantee that we found the global optimum 

[1], [2]. When we choose an optimization model, there is also 

the question of how much detail to include in the problem 

description. Although the goal is to find the lowest cost 

design, one might wish that the solution should provide 

sufficient information, so that an actual design could be 

produced with little additional work [1], [2] and [3].  

The transformer design is a mixture of science and art. Also 

nowadays, it relies mainly on the designer's knowledge and 

experience [2]. As far back as the beginning of the 20th 

century the manufacturers started to research optimization 

methods. Early research in transformer design attempted to 

reduce much of this judgment with analytical formulas. 

Countless design procedures and a wide range of applied 

mathematical models can be found in the literature [1]–[9]. 

The first procedures replaced the different winding systems 

with their copper filling factor, and the aim is these methods to 

ascertain the optimal winding-core ratio. The first computer 

program for transformer optimization made by P.A. Abetti et al, 

in the General Electric corporation's laboratory in 1953 [1], 

[2], [3] and [5]. This program gave back the design variables, 

which provided sufficient information for a designer who 

made a solution for an offer from these data, which satisfies 

all of the requirements. A good example of the wide range of 

implemented mathematical models, that Andersen [4] is made 

an optimizing routine named Monica based on Monte Carlo 

simulation. The use of the artificial intelligence techniques in 

power transformer design like neural networks [6], [7], [8] or 

genetic algorithms [5], [6], give good evidence, that 

transformer design optimization is an active research field 

nowadays. 

The importance of GP is based on relatively recent 

developments in solution methods which can solve even large-

scale geometric programs extremely efficiently and reliably 

[9]–[12]. Moreover, a geometric program can be converted 

into a convex optimization problem implying that the 

computed optimal solution is global. 

One of the first applications of the GP is the transformer 

optimization [9]. This paper shows an optimization model 

which extends of these classical two winding GP optimization 

methods [2], [7] and solved by CVXOPT [12] very quickly. 

The aim of this optimization model is not to revise the final 

design, just to give an accurate hint for the designer at the 

beginning of the offer preparation stage. 

II. GEOMETRIC PROGRAMMING 

The GP is a branch of the non-linear optimization problems 

given in the standard form [2], [9]–[12]: 
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where x=(x1, x2, … xn) is a vector containing the optimization 

variables, fi(x) is a posynomial constraint inequality, gj(x) is a 

monomial constraint equality function. All elements of x must 

be positive. The monomial function g(x) expressed as: 
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where   igc , and  0gc . 
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A polynomial function is a linear combination of monomials: 
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The main requirement for solving a GP efficiently is to 

convert it into a convex optimization problem [10], [11]. A GP 

problem is non-convex in their general form, but most of them 

can be transformed into convex optimization problems by a 

logarithmic change of variables as ia
i ey  , and a 

transformation of the objective and constraint functions: 
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If this is done, convex optimization problem solvers can be 

used that are based on the efficient interior-point solving 

methods. The GP modeler does not need to know how GPs are 

solved; the transformation to a convex problem is handled by 

the applied solver. An open source implementation of the 

above mentioned primal-dual interior-point method is 

available in the CVXOPT [15] Python module.

The Optimization Model For Core-Form Power Transformers 

The aim of the presented core-form transformer model is to 

give a sufficient solution for the cost optimization problem for 

offers. From the result parameters, the designer can make a 

solution with little additional work which satisfies all the 

mechanical, thermal and electrical constraints that are required 

for sophisticated design codes. This optimization model is 

mainly based on [2]. 

A. Objective function 

The object function is the transformer capitalized cost. This 

consists of the manufacturing cost and the cost of the losses 

[13], [14] and can be expressed as 
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In this formula: 

A is the no-load loss capitalization factor in €/Kw, 

B is the load loss capitalization factor in €/kW, 

Pll is the load loss of the transformer in kW, 

Pnll is the no load loss of the transformer in kW, 

Ck is the sum of the unit manufacturing cost and the material 

cost of the transformer part in €/kg, 

Mk is the mass of the transformer part in kg. 

 

Fig. 1. Schematic view of the applied electrical and geometrical parameters in the transformer “Working window” model. 
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In the optimization we take into consideration the active 

part of the transformer and the mass of the transformer tank. 

The transformer’s active part consists of the core, the two 

main windings and the regulating winding in the presented 

model. These cost components are expressed with a basic set 

of design variables. 

B. Design variables 

The basic design variables in this optimization method are: 

Pll is the load loss of the transformer in kW, 

Pnll is the no load loss of the transformer kW, 

Rs is the mean radius of the secondary coil in mm, 

ts is the thickness of the secondary coil mm, 

Js is the current density of the secondary coil in A/mm2, 

hs is the height of the secondary coil in mm, 

Rp is the mean radius of the primary winding in mm, 

tp is  the thickness of the primary winding in mm, 

Jp is the current density of the primary winding in A/mm2, 

gm is the main insulation distance in mm, 

s is the radial width of the winding system in mm, 

tr is the  thickness of the regulating winding in mm, 

Rr is the radius of the regulating winding in mm, 

B is the magnetic flux density in the core in T, 

Mc is the mass of the core in kg, 

Z is the short-circuit impedance in %. 

C. Inequality constraints 

 

1) Load loss estimation in a winding 

 
  

i
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where 

ρCu is the copper resistance in Ω·m at 75 °C, 

i represents a winding, 

λi is the copper filling factor in the winding i. This factor is an 

input parameter of the program.  The value of parameter is 

well approximated by the designer from the voltage level, 

short-circuit impedance and phase current values, 

κ is a stray loss estimation factor described in [15], this paper 

we using κ = 4 for the calculations, in the case of unshielded 

transformers, 

αi is the height ratio of the primary – secondary and the 

regulating. 

 

 

2) No-load loss calculation 
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where 

bf is the building-factor, which is the ratio of the measured 

and the calculated core losses from the Epstein-curvature. The 

value of bf  depends on the core manufacturing technology, 

we chose 2.1bf  in our calculations, 

 



5

0j

j
j xa is the fitted posynomial function to the material 

Epstein-curve, which provided by the manufacturer. 

 

 

3) Core mass calculation 

As we use the working window terminology for the 

transformer calculation, we can easily generalize the 

optimization model for different transformer types by 

multiplying the results with the number of working windows, 

and write the mass of the core in the next generalized form: 

  slcorneryokecolumncore MMMMM  . (8) 

where  

Mcorner is the sum of the corners mass in kg, 

Mcolumn is the mass of the columns in kg, 

Myoke is the sum of the yokes, without the corners mass in kg, 

Msl is the mass of the side-legs in kg. 

 

It is possible to explicate these masses to the next closed forms: 

 )( 22   cfecccorner RcRM , (9) 

 )(2
tbfecccolumn eieihRM   , (10) 

 )(2 mnmsnsRM feccyoke   , (11) 

 )(2 mneieihhpRM tbfeccsl   . (12) 

where 

ρFe is the density of the core material in kg/m3, 

ζ is the ratio of the leg and the side leg, 

c number of the corners in the applied transformer core shape, 

γ is factor, which take into consideration the mass growth in 

the corners. In this paper we chosen γ = 1.025, 

eib and eit is the length of the end insulation in the bottom and 

the top region, for the calculation we need only the sum of 

them in mm, 

ηc is the core filling factor, which takes into consideration the 

lamination, cooling ducts, etc. in %, 

sn is the number of the winding widths, 

m the distance between two phase in mm, 

mn is the number of m dimensions in the core shape, 

p is the number of side-legs. 

 

 

4) Window width 

  sggtttg regrpscore  , (13) 

where 

gcore is the distance between the core and the secondary 

winding. 

greg is the distance between the regulating winding and the 

primary winding. 

 

The window width variable is introduced to simplify the 

equation system when we use it for different core types, or 

different positions of the regulating winding are applied. 
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Fig. 2. Illustrates the different summarized parts in the case of common three 
phase, three legged transformer core. In this case c = 6, p = 0. 

 

 

5) Winding Arrangement 

Inequality to define  ps RR  positions, which illustrated in 

the figure 1 is found as: 
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Inequality to define the cs RR   positions: 
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Inequality to define the  rp RR   positions: 
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6) Regulating Winding Dimensions 

The model assumes that we are using a diverter switch for 

the regulation and in the nominal state the regulating winding 

is de-energized. The regulating winding at that time reduces 

the short-circuit impedance of the transformer by their radial 

width 
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  mainmainreg PP  , (18) 

where 

αreg is the ratio of the regulating and the secondary winding. 

λreg is the copper filling factor of the regulating winding in %. 

Ureg is the voltage drop on the regulating winding in kV. 

Jreg is the current density in the regulating winding in A/mm2. 

εmain is the main winding regulating range in %. 

 

 

7) Simple Limitations 

It is necessary to take into consideration a lot of 

requirements, like simple limitation of physical parameters 

such as saturation point of the magnetization curve 

  maxBB  , (19) 

overheating with the current density limitations  

  
maxii JJ   (20) 

and minimum distance for the main gap, the optimization 

algorithm can grow the short-circuit impedance, with higher 

main gap selection 

  mingg  . (21) 

 

 

8) Short-Circuit Impedance 

This is the weak point of the model described in [2], [7] for 

core-form transformers. The well-known analytical formula 

for the short circuit impedance calculation, which you can find 

in a wide range of transformer books [2], [15] and [16] 

 



















 mm

ppss

T

ph
tR

tRtR

shU

Pf
Z

33)(

2

2

0
2 

, (22) 

where UT is the turn voltage, all other parameters are known. 

However, there are several difficulties, why we use this 

formula to check the optimization result: 

(I) This is a polynomial formula, so it is used for inequality 

constant only, as we seen it; The short-circuit impedance is a 

prescribed value, so we have to use it in at least two 

inequalities in ± 3 % region, so it can give a solution which 

corresponds to the standard; 

(II) The greater than inequality is the critical one, because the 

lesser impedance can reduce the transformer cost, so the 

equation does not constrain the cost function, like [2], [7] 

concluded. 

 

So there is a need in constraint function for the optimization 

model in the simplified form (A, B, C, D terms mean a general 

monomial expression) 
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However, we can use only the pair of this formula to calculate 

the short-circuit impedance 
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The GP module cannot handle the constraint expressions in 

the next form, 

 
 

D
BA

c
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Utilizing only one of the given two constraint functions like 

[2], [7] causes higher short-circuit impedance than the given 

short-circuit impedance value, so the optimized transformer 
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has lower short-circuit impedance value. So we left these 

short-circuit impedance constraints from our equation system. 

To solve the problem of the short-circuit impedance 

calculation, we decided to introduce a heuristic solution based 

on the successive over-relaxation of the equation system. The 

basis of this solution is a shape factor, which describes the 

ratio of the primary and secondary winding radial widths, this 

factor derived from one monomial term of the short-circuit 

impedance. 

The program iterates this factor. As a result of the first run, 

we get an optimized geometry, and we compare the calculated 

short-circuit impedance to the given. Usually the calculated 

short-circuit impedance lower than the given one. We slightly 

modify the geometry with an empirical shape factor defined 

with a monomial function in order to increase the calculated 

short-circuit impedance. The next run of the optimization, will 

find a new optimal geometry with the modified shape factor, 

and a higher short-circuit impedance. This procedure repeated 

till the calculated short-circuit impedance becomes close to the 

given one.  

D. Equality Constraints  

One of the most important constraint functions to describe 

the exact nominal phase power of the transformer winding 

  2244.4 cssscph RtBjhfP   . (26) 

The abstract shape factor (fs): 

 
 

s

s
s

c f

t
R

Z

Z
 , (27) 

where, Zc is the aimed short-circuit impedance value. This 

empirical formula derived from one monomial term of (22). 

III. PRACTICAL EXAMPLE 

It is supposed that we have a calculation for a three-phase 

33 MVA transformer with YNd11 connection. The secondary 

voltage is 34.5 kV the primary is 161 kV, with a ± 10 % 

regulating range. 11.2 % is the short circuit impedance target. 

The capitalized loss prices A = 1400.0 €/kW, B = 4000 €/kW. 

The transformer has a 3 phases, 3 legged cores, the applied 

core material is a M1H grade electrical steel. The price of the 

steel is 3.0 €/kg, the allowed maximum magnetic flux density 

in the transformer’s core is Bmax = 1.65 T. The core filling 

factor is set to 89 %. From the assumed winding types, the 

copper filling factor selected to 55 % for the primary and the 

secondary windings, and 70 % for the regulating one. The 

insulated copper price for the secondary winding is 10 €/kg, 

which a good estimation in the case of CTC conductors with 

helical winding arrangement and 9.0 €/kg is assumed for 

primary disc and regulating winding. The main gap minimum 

has been chosen to 45 mm, from the insulation levels 

according to [17], BIL = 650 kV and AC = 275 kV. We set the 

core-secondary distance to 20, and the distance between the 

two phase windings to 150 considering the insulation levels 

[15], [16] and [18].  

TABLE I 

RESULTS OF PRACTICAL EXAMPLE CALCULATION 

 

The results of the calculation are in Table I. In turn, the 

Method I shows the results of the new algorithm, Method II 

shows the solution of the GP presented in[2], [7]. The Method 

II as it is shown calculates inadequate short-circuit impedance 

and the active-part design contains taller windings as well as 

core diameter is wider than results provided by the new 

method. The dimensions that we get with the new solution 

technique correspond to the designer’s calculation. 

IV. EXAMPLE – THEORETICAL CALCULATION 

A theoretical calculation is made based on the well-known 

function, which provides maximum efficiency for the 

transformer if the load loss equals with loss without load. This 

statement is true only in the case when the capitalization 

prizes are extremely high and the manufacturing prices are not 

considerable. It is important to note that the objective function 

simplified in this case to the following form: 

  llnll BPAP=C  . (28) 

The load loss and no load loss capitalization prices are set to 

10000 [€/kg] and the material price are reduced to 0.1 [€/kg]. 

All of the other technological parameters are taken from the 

practical example (previous chapter). So we expect that the 

core loss and load loss ratio near to 1:1, not exactly because of 

the applied factors, which we used to take into consideration 

the stray losses in the other construction parts of the 

transformer. 

Quantity Dimension Result 

Method  I II 

Turn Voltage V 98.75 129.5 

Induction in the column T 1.65 1.65 

Core diameter mm 622.0 700 

Core Mass  t 23.0 29.5 

No-load loss kW 22.2 28.5 

Load loss kW 129.95 76 

Short-Circuit Impedance % 11.39 6 

Winding thickness 

secondary mm 100.0 62 

primary mm 95.0 78 

regulating mm 11.0 11 

Winding height 

secondary mm 1033.0 1058 

primary mm 992.0 1015 

regulating mm 579.0 592 

Current density 

secondary A/mm2 1.96 2.44 

primary A/mm2 2.07 1.96 

regulating A/mm2 2.32 2.03 

Mean diameter 

secondary mm 756.0 796 

primary mm 1040.0 1025 

regulating mm 1295.0 1262 



Electrical, Control and Communication Engineering 

2014/6 _________________________________________________________________________________________________  

18 

TABLE II 

RESULTS OF THE THEORETICAL EXAMPLE CALCULATION 

Quantity Dimension Result 

Turn Voltage V 103.5 

Induction in the column T 1.04 

Core diameter mm 800.0 

Core Mass  t 62.4 

No-load loss kW 19.2 

Load loss kW 21.5 

Short-Circuit Impedance % 11.16 

Winding thickness 

secondary mm 178.0 

primary mm 241.0 

regulating mm 11.0 

Winding height 

secondary mm 2452.0 

primary mm 2354.0 

regulating mm 1447.0 

Current density 

secondary A/mm2 0.41 

primary A/mm2 0.31 

regulating A/mm2 1.47 

Mean diameter 

secondary mm 1011.0 

primary mm 1519.0 

regulating mm 1919.0 

 

The results can be seen in Table II. The diameter of the core 

and the winding dimension are very high because of the 

abnormal cost parameters, nevertheless this model demonstrates 

that the solution of this optimization method corresponds to 

the theory in this extreme case. 

CONCLUSIONS 

The presented transformer optimization model can help the 

designer to make a competitive solution in short time for a 

quotation. The introduced calculation examples require only 

few seconds to compare the solutions for a full quotation. In a 

standard way it takes more than one day. This paper showed 

that the geometric programming model, which introduced in 

[2], [7] and effectively used for shell type transformer 

optimization [5]. The previous method is not able to take the 

short-circuit impedance of the transformer into consideration. 

In this paper, a new heuristic method is introduced by sample 

calculations. The newly developed calculation method 

eliminates the weakness of the previous model by the 

correction of the short-circuit inductance calculation [2], [7]. 
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