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Abstract – The paper suggests a method of obtaining an 

approximate solution of the infinite noncooperative game on the 

unit hypercube. The method is based on sampling uniformly the 

players’ payoff functions with the constant step along each of the 

hypercube dimensions. The author states the conditions for a 

sufficiently accurate sampling and suggests the method of 

reshaping the multidimensional matrix of the player’s payoff 

values, being the former player’s payoff function before its 

sampling, into a matrix with minimally possible number of 

dimensions, where also maintenance of one-to-one indexing has 

been provided. Requirements for finite NE-strategy from NE 

(Nash equilibrium) solution of the finite game as the initial 

infinite game approximation are given as definitions of the 

approximate solution consistency. The approximate solution 

consistency ensures its relative independence upon the sampling 

step within its minimal neighborhood or the minimally decreased 

sampling step. The ultimate reshaping of multidimensional 

matrices of players’ payoff values to the minimal number of 

dimensions, being equal to the number of players, stimulates 

shortened computations. 

 

Keywords – Systems, man, and cybernetics; Decision theory; 

Computational efficiency; Mathematical model. 

I. NONCOOPERATIVE GAME MODELS 

Mathematically, a game is a means for rational resources 

allocation to meet the growing demands and requirements. 

And many events, systems and processes, related to the 

inequality between resources and pretensions, are modeled 

with noncooperative games [1], [2]. Particularly, these games 

involve a few players in military process and jurisprudence 

[3], [4]. Also, there may be more players (up to a few tens) in 

economical and social-ecological gaming models [5], [6]. 

Sometimes a two-sided noncooperative game is the most 

appropriate model for removing uncertainties in technical 

problems [6], [7]. For instance, this is for preventing a denial 

of service, when a server (reservoir) runs out of resources 

while a number of queries (demands) is not less than the 

rejection number [8], [9]. 

Naturally, that far from any noncooperative game solution 

in NE (Nash equilibrium) strategies ensures equilibrium, 

utility, and fairness [2], [10], [11]. However, NE-solutions 

render a lot of the refined or modified principles of optimality, 

allowing to smooth differences in utility and equity [2], [10], 

[11]. Mainly, they are principles of Pareto equilibrium [2], [6], 

[8], [10], [13], [14], Mertens-stable equilibrium [15], 

trembling hand perfect equilibrium [16], proper equilibrium 

[17], [18], correlated equilibrium [19], sequential equilibrium 

[20], [21], quasi-perfect equilibrium [18], [22], [23], perfect 

Bayesian equilibrium [18], [20], [24], [25], quantal response 

equilibrium [26], [27], self-confirming equilibrium [28], [29], 

strong Nash equilibrium [30], [31], Markov perfect 

equilibrium [32], [33]. The question is only to find NE-

solutions as fast as possible. 

II. SOLVING NONCOOPERATIVE GAMES  

ON COMPACT ACTION SPACES 

Finding NE-solutions in even the finite noncooperative 

game is a computational difficulty [8], [34], [35]. Locally, 

solving dyadic games with three players takes some technique 

of visualization of the cube of situations in pure strategies [6], 

[10], whereupon dyadic games with four players and more are 

solved purely in analytics, requiring more computational 

resources [10], [36]. Naturally, that finite noncooperative 

games with greater numbers of pure strategies at their players 

(three and more) are significantly hard to solve them [10], 

[37], [38]. Moreover, often an admissible player’s action is 

described with a series of its continuous parameters, 

constituting thus an infinite (continuous) set of pure strategies 

[1], [6], [7], [12], [39], [40]. If this continuous set is compact 

then it is easy to find an isomorphic game to the initial one, 

that the set of every player’s pure strategies would be 

Euclidean finite-dimensional subspace [6], [10], [12], [23], 

[41]. Normally, the spoken subspace may be a unit cube of the 

appropriate dimension [6], [10], [11]. Nonetheless, compact 

games, having solutions at least in mixed strategies for 

measurable payoff functions [1], [6], [10], [11], [41], [42], 

cannot be solved by a universal algorithmic approach, unless 

they are finite games. 

III. TASKS FOR THE GOAL ATTAINMENT 

Clearly, a proper conversion of the infinite noncooperative 

game on unit hypercube into a finite game lets to have a 

guaranteed NE-solution [6], [10] to the conflict object. 

Therefore, the goal of this paper is to state the conditions or 

requirements of that conversion. To simplify the finite game 

more there will be reconfigured sets of players’ pure 

strategies, letting to get rid of dimensionalities and to have the 

single dimension for each player. For the goal attainment there 

are tasks to state the following: 

1. Conditions for sampling the players’ payoff functions 

correctly, being sufficiently accurate for practice experience. 

2. Method of reshaping the multidimensional matrix of the 

player’s payoff values (being the former player’s payoff 

function before its sampling) into a matrix with minimally 
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possible number of dimensions. Maintenance of one-to-one 

indexing should be provided. 

3. Requirements on that any finite NE-strategy (from NE-

solution of the finite game as the approximation of the initial 

infinite game) must not be too dependent upon the sampling 

step. Or, in other words, NE-strategy support must be 

independent upon the sampling step within some tolerable 

dependence. 

IV. SAMPLING OF PLAYERS’ PAYOFF FUNCTIONS 

Consider a noncooperative game 
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where every variable is included no more than just once. 

While sampling uniformly, let S  be the number of intervals 

between the selected points in each of the dimensions of every 

hypercube from  
1

N

n n
U


. Remember that each dimension is 

the unit segment now. Tolerating the utmost case of sampling, 

where endpoints of the unit segment are included into the 

sampling necessarily, S . The constant sampling step is 
1S . Thus in mth dimension nth player instead of the segment 

 0; 1  of values of mth component of its pure strategy nX  in 

(2) now possesses the set of points 
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Obviously, the players’ payoff functions, whose extremums 
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be expected to occur for real conflict processes. Hence, the 

real conditions for sampling the players’ payoff functions 

correctly remain in inequalities (7). The conditions (6) may be 

optionally checked to underscore the accurateness of the 

sampling (but they will be unlikely satisfied, unless there are 

two players and minimum of dimensions). 

Parameter   is pre-assigned on some practical reasoning. 

Considering the value 
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it can be said that 0.01 v   or 0.001 v  , are 

sufficiently accurate for practice experience. Nevertheless, the 

parameter   may be taken lesser to have the game 
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approximate solution consistent enough, what is going to be 

spoken about further. 

V. RESHAPING OF MULTIDIMENSIONAL MATRICES  

OF PLAYERS’ PAYOFF VALUES 
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Understandably, it is very inconvenient to operate on such 

multidimensional matrices, representing the players’ payoff 

values. Another inconvenience is computational retardation 

due to supplementary dimensions. For instance, 1000 
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Henceforward, instead of the infinite noncooperative game 

(1) on unit hypercube (4) here is its approximation as the finite 

noncooperative game 
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by the function  ,y b  returning the fractional part 

(remainder after division) of the ratio 
y

b
. Then the set (8) is 

indeed given back, whence the matrix element (9) can be 

restored. 

VI. CONSISTENCY OF NE-STRATEGY SUPPORT, 

APPROXIMATING THE UNKNOWN GENUINE NE-STRATEGY 
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probability of applying the pure strategy  n

nuz S
X

 in an NE-

strategy of the nth player 
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having its cardinality    * 1 nM
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intervals between the selected points in each of dimensions of 

hypercube 
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but also the players’ payoffs. And conception of the Helly 
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So, N  players take their payoffs   
1

N
n

NE
n

v S


 in NE-

situation (15), and they take payoffs   
1

1
N

n

NE
n

v S


  in NE-

situation (20) for the minimally increased sampling number 

(the minimally decreased sampling step). Apparently, there 

can be selected such a sampling step, for which at least 

 0 1,n N   such that payoffs  0n

NEv S  and  0 1
n

NEv S   will 

be significantly different. Another difference is that NE-

situation (15) in the game (12) will have configuration, being 

hardly comparable to the corresponding configuration of NE-

situation in the game (1) or to NE-situation (20) for the 

minimally decreased sampling step. So, for initial acceptance 

of the game (12) solution as an approximate solution of the 

game (1) there are the following exigencies: 

1) a sufficient closeness of the players’ NE-situations, being 

found by nearest neighbor numbers of intervals between the 

selected points in each of dimensions of every hypercube from 

 
1

N

n n
U


; 

2) a sufficient closeness of the players’ payoffs, being taken 

in these NE-situations. 

However, what is the rate of “sufficient closeness” for those 

ones? Obviously, it is unknown as well as the players’ payoffs 

are. The one that remains there is a relative closeness, 

meaning that the attribute value (the player’s payoff, the 

player’s NE-strategy, etc.) differentiates less as the number S  

increases (growing more “stable”). In the payoff case, that 

relative closeness of the players’ payoffs is this 

       1 1
n n n n

NE NE NE NEv S v S v S v S       

 1,n N  . (22) 

The sufficient closeness in the case of NE-situations, giving 

payoffs for players, needs consideration of the player’s NE-

strategies supports as hypersurfaces. Let for the nth player 

there be a piecewise linear hypersurface  ,n nh u S , vertices of 

which are in points 

  
1

1 1

1
: , 1, , nn

n

n

n

nMk
i n NE u

M i

j
k m M m M p z S
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 X
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      

     
 X

 (23) 

in the space 
1nM 

. The nth player’s NE-strategy support (17) 

scores up the nonzero vertices of the hypersurface  ,n nh u S  

by (18) and (19), wherein 

   
 

1

1

1

n

n

q

q q k

n nm n
M

M

j S
S x S U

S



 
     

  

X    

 by  

1

1

n

i

i

k m M





    and  1, nm M  (24) 

by (13) for  *1, nq Q S  and matching the index  q

nu S  to 

the point (24) through the expansion (14). Then may the nth 

player’s set   
 *

1

nQ S
q

n
q

S


X  of the points (24) be sorted into the 

set 

  
   

 

  
 
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* *
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1
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q q
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 by  

1

1

n

i

i

k m M





    and  1, nm M  (25) 

so that the value 

 
  

    1

*
11

1

2

1,

, 1,

min
nn

i n

i

q q

k k
q q Q S

k m M m M

j S j S




 

  





  (26) 

is reached at 
1 1q q   for each  *1, 1nq Q S   1,n N  . 

With new indices   
 *

1

nQ S
q

k
q

j S


 of the sets (25) 1,n N   

there appears an enhancement in measuring the averaged 

support density. This is needed because the inequality 

    * *1n nQ S Q S   1,n N   (27) 

cannot singly itself express the requirement of that the 

averaged support density shall not decrease for the minimally 

decreased sampling step (the minimally increased sampling 

number). 

Definition 1. The solution (15) of the game (12) is called 

weakly consistent for being the approximate solution of the 

game (1) if 1,n N   the inequalities 

  
    

*
1

1

2
1

1, 1 1

, 1,

max 1 1
nn

i n

i

q q

k k
q Q S

k m M m M

j S j S






  

  

  



  

 
  

    
*

1

1

2
1

1, 1

, 1,

max
nn

i n

i

q q

k k
q Q S

k m M m M

j S j S






 

  





 , (28) 

   max , , 1
n

n n n n
U

h u S h u S   

    max , 1 ,
n

n n n n
U

h u S h u S   (29) 

and 

   , , 1n n n nh u S h u S   

    , 1 ,n n n nh u S h u S    in   2 nU  (30) 

are true along with (22) and (27). 

Noting that inequalities (27) and (28) might be stated for the 

minimally increased sampling step, there is a way to condition 

the approximate solution harder. This, nonetheless, will 

underscore the “monotonicity” of NE-strategies in (15) within 

minimal neighborhood of the sampling step. 

Definition 2. The weakly consistent solution (15) of the 

game (12) is called consistent for being the approximate 

solution of the game (1) if 1,n N   the inequalities 

    * * 1n nQ S Q S   (31) 

and 

  
    

*
1

1

2
1

1, 1

, 1,
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nn
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q q
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  
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

  

 
  

    
*

1
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2
1

1, 1 1

, 1,

max 1 1
nn

i n

i

q q

k k
q Q S

k m M m M

j S j S






  

  

  



  (32) 

are true. 

Surely, (weak) consistency of an NE-strategy support, 

approximating the unknown genuine NE-strategy, is not 

sufficient to say that the solution (15) is (weakly) consistent. 

Speaking strictly, for now there is no proof that the consistent 

NE-strategy support causes at least the weak consistency of 

the other NE-strategy support. That is for admission of the 

solution (15) as an approximate solution of the game (1) there 

are 5N  inequalities (22) and (27)‒(30) to be checked. And if 

one wants to handle the game (1) approximation surer there 

are 7N  inequalities (22) and (27)‒(32) to be checked. 

Properly speaking, neither conditions within Definition 1, 

nor conditions within Definition 2 guarantee the perfection of 

the game (1) approximation as the game (12) with its (weakly) 

consistent solution (15). But with (22), (29), (30) there is the 

solution (15) distinctive property signifying that both the 

players’ payoffs (21) and the players’ NE-strategies supports 

as hypersurfaces differentiate less as the number S  increases. 

Growing more “stable”, the volume and the averaged NE-

strategies supports’ densities also do not decrease as the 

number S  increases due to (27) and (28). This “non-

decreasing” property becomes stronger with (31)‒(27) and 

(32)‒(28), strengthening the solution (15) relative 

independence upon the sampling step within its minimal 

neighborhood. 

VII. DISCUSSION AND CONCLUSIVE REMARKS 

The conception of consistency has been contrived for 

proper approximation of the infinite noncooperative game. 

Being defined on the unit hypercube (4), this game is 

isomorphic to games, defined on compact subspaces in 

1

N

n

n

M



, wherein the nth player acts within the compact 

subspace of nM
 by 1,n N . According to the isomorphism, 

for solving infinite noncooperative games on compact action 

spaces there is available the stated approximation way to be 

applied, allowing to reshape multidimensional matrices of 

players’ payoff values by (11) to the minimal number of 

dimensions, being equal to the number of players. Due to 

narrowing the dimensionality, this anyhow shortens the 

computation period. And computing the factual solution stays 

for finite noncooperative game solvers [1, 10, 38, 43, 44]. 

Before approximating, the weak consistency ought to be 

checked first. The check consecution starts with checking the 

inequalities (27), where two games are solved towards (15) 

and (20). Then goes subconsecution of checking the 

inequalities (22), (29) and (30) 1,n N  , needing three 

games to be solved, towards (15), (20) and 

    
1

1

1

Mn

n

n
n

N
S

n

NE u
u

n

p z S




 
 

 

X
. (33) 
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Finally, the inequalities (28) 1,n N   are checked, needing 

more computational resources for sorting sets 

  
 *

1
1

n

N
Q S

q

n
q

n

S




 
 
 

X  into sets   
 *

1
1

n

N
Q S

q

n
q

n

S




 
 
 

X  although 

using the previously solved two games with (15) and (20). 

When the weakly consistent solution (15) of the game (12) is 

checked for consistency, there are used solutions (15) and (33) 

once again, and then N  inequalities (31) are checked first, 

whereupon come those N  inequalities (32). Namely the stated 

consecutions are preferable, because the easiest requirements 

are checked before the more complicated ones in order to 

prevent needless huge computations (manipulations) over non-

consistent solutions, being exposed after easier comparisons 

like (27) or (22). 

The main lack of the approximation is that there is neither 

proved limits 

 lim
n

NE
S

v S


  1,n N   

existence and their convergence to the genuine players’ 

payoffs in NE-situation approximated by NE-situation (15), 

nor proved limits 

 lim ,n n
S

h u S


  1,n N   

existence and their convergence to the hypersurfaces from the 

genuine NE-situation approximated by NE-situation (15). But 

anyway, the represented method of converting the infinite 

noncooperative game on unit hypercube into the finite game 

lets to have an NE-solution to the conflict object, even when 

the game (1) is solved in  -equilibrium situations or doesn’t 

have solution at all. Besides, the approximate solution (15), 

where every player has the finite NE-strategy support, is 

practiced more freely with discrete variates [45], [46] unlike 

practicing on continuous variates [47], [48]. 

The investigation of approximating infinite noncooperative 

games could be brought forward if the set in (5) for nth player 

was formed with a specific number of intervals 
nS  between 

the selected points in each of hypercube 
nU  dimensions. 

Further to this, nth player could take a specific number of 

intervals 
nmS  between the selected points in mth dimension of 

one’s pure strategy (2). This might be useful inasmuch as 

multidimensional matrices of players’ payoff values in the 

hypercubic lattice form are preferred to other forms [10]. 

However, the main issue is to make problems of the type (26) 

effectively computable for accelerating the consistency checks 

in (28) and (32). 
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