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Abstract – The present paper describes the development of a 
new technique for designing orthogonal bicomplex Digital Signal 
Processing (DSP) algorithms. In contrast to those previously 
reported on, this novel method is of universal application while 
being unaffected by either the type or the order of the real digital 
processing algorithm employed as a prototype. The proposed 
technique builds on Watanabe and Nishihara’s complex 
orthogonal transformation, and converts real or complex 
orthogonal transfer functions into bicomplex orthogonal ones. In 
this study, the new technique is applied to the design and testing of 
orthogonal bilinear bicomplex filters with a canonical number of 
elements, the main advantage of which is that they are several 
times lower in order. In this way, bilinear bicomplex orthogonal 
transfer functions are made up of real coefficient ones of the 
fourth-order, thereby reducing the order of the filter by a factor 
of four. The experiments demonstrate that the properties of the 
prototype filter are acquired by the bicomplex orthogonal filters, 
irrespective of the prototype being complex or real in nature. 

 
Keywords – Bicomplex digital filters; Orthogonal complex 

digital filter; Sensitivity; Word-length. 

I. INTRODUCTION 
Hypercomplex numbers are an expansion of complex 

numbers. Hypercomplex arithmetic is based on quaternions and 
biquaternions, a concept developed by the Irish mathematician 
Hamilton in 1843 [1]. Later Schutte and Wenzel [2] determined 
that Hamilton’s number system is not well suited for use in 
Digital Signal Processing (DSP) and in 1990 they introduced a 
different number system, named Reduced Biquaternions (RBs), 
also known as bicomplex numbers. This latter terminology will 
be utilized from here on in this paper. Thenceforward 
bicomplex arithmetic has been applied in a number of areas, 
such as image processing, computer graphics, aerospace 
engineering, etc. 

Modern-day telecommunications often employ narrowband 
signals, which are complex in nature and are best processed 
through the use of complex DSP algorithms. Orthogonal 
complex filters [3] now represent a well-developed field, both 
theoretically and experimentally, and they are therefore used in 
the processing of a special class of narrowband signals, termed 
analytical signals. Hypercomplex signals as an extension of 
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complex signals has already been introduced [4] and a large 
number of research studies relating to their processing have 
been reported. Digital filters with bicomplex coefficients are 
widely applicable digital processing algorithms and are used in 
many applications such as colour-based object and image 
recognition [5]–[7], smoothing colour image components [8], 
hash authentication of images [9], image processing of both 
colour and grey scale images [10], auto- and cross-correlation 
of colour image processing [11], [12], and multispectral 
recognition [13].  

Both computational efficiency and the stability criterion of 
digital filters with bicomplex coefficients have also been 
investigated [14], [15]. Bicomplex digital filters significantly 
reduce the filter order – by twice the order for a complex filter 
and four times the order for a real coefficient filter – which is 
their main advantage. Numerous approaches to designing 
bicomplex filters have been put forward in the literature [16]–
[19], most of them having been developed for specific types of 
digital filters and thus rendering them non-universal. 
Orthogonal transforms, for example, the Quaternion Polar 
Harmonic Transform (QPHT) [20] and Quaternion Polar Linear 
Canonical Transform (QPLCT) [21], are employed in the 
improvement of image representation capability and numerical 
stability. In [22] and [23], a design of orthogonal filters with 
hypercomplex coefficients, based on the concept that “an 
orthogonal filter with real coefficients is expanded into one with 
hypercomplex coefficients”, is proposed. This design method is 
based on real all-pass IIR filter sections “through the use of an 
orthogonal polynomial expansion”, which does not result in a 
bicomplex structure capable of processing a pair of orthogonal 
complex signals. 

This publication describes the development of a new design 
procedure for orthogonal bicomplex DSP algorithms. The 
procedure is applied to derive orthogonal bicomplex bilinear 
IIR digital filters, and is suitable for any filter structure of any 
order. As many DSP applications require efficient high 
accuracy filters with very short word-length coefficients that 
can be achieved by using low-sensitivity structures, a bilinear 
narrow-band bicomplex digital filter with very low coefficient 
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sensitivity is designed here, using the proposed new technique, 
and a comparative study is undertaken. 

The paper is arranged in the following way: Section II 
outlines the main properties of bicomplex numbers. In 
Section III, a new design procedure for orthogonal bicomplex 
digital filters is presented. Bilinear bicomplex orthogonal filters 
are derived in Section IV and their sensitivity is experimentally 
investigated in Section V. Section VI concludes the paper. 

II. PROPERTIES OF BICOMPLEX NUMBERS 
A quaternion may be represented in hypercomplex form as 

follows: 

 1 2 3 4q q iq jq kq= + + + , (1) 
where q1, q2, q3 and q4 are real numbers, while i, j, and k are 
orthogonal complex operators that obey the following rules: 

 
2 2 2 1;

; ; ; ; ; .
i j k ijk

ij k jk i ki j ji k kj i ik j
= = = =−

= = = =− =− =−
 (2) 

In respect of the arithmetic laws of a quaternion, addition of 
two quaternions is commutative and associative, while 
multiplication is associative but not commutative, which 
renders them inapplicable to DSP systems.  

In order to solve this problem, bicomplex numbers derived 
as follows have been proposed: q3 and q4 are set to zero and q1 
and q2 are expanded to complex numbers. This modification is 
equivalent to the expansion of each element of a complex 
number so that it becomes a complex number itself hence, its 
name – bicomplex number: 

 
[ ] [ ]1 2 1 2 3 4

1 2 3 4 ,S V

a a ia A jA i A jA
A iA A jA iA kA A

= + = + + + =

= + = + + + =
 (3) 

where A1, A2, A3 and A4 are real numbers, j is the imaginary unit 
with j2 = −1 and i is the vector unit with i2 = −1. The complex 
numbers AS and AV are called the scalar part and vector part, 
respectively. The properties of the imaginary units of a 
bicomplex number A are as follows [2]: 

 
2 2 21; 1;
; ; .
i j k

ij ji k jk kj i ki ki j
= = − =

= = = = − = = −
 (4) 

Two types of conjugate of A can be defined – the vector 
conjugate: 

 1 2 3 4( ) ( )S VA A iA A jA i A jA+ = − = + − +  (5) 
and the complex conjugate: 

 *
1 2 3 4( ) ( ).S VA A iA A jA i A jA∗ ∗= + = − + −  (6) 

Moreover, a double, or hypercomplex, conjugate can also be 
defined as: 

 *
1 2 3 4( ) ( ).S VA A iA A jA i A jA+ ∗ ∗= − = − − −  (7) 

The norm of a bicomplex number is defined in the range of 
complex numbers and is as follows: 

 ( )( )( ) .S V S VN A AA A iA A iA+= = + −  (8) 

Applying Euler’s formula for the complex exponential, 
generalized to a hypercomplex form, any quaternion q may be 
represented in polar form as: 

 .q q eµΦ=  (9) 
μ and Φ are referred to as the eigenaxis and eigenangle of q, 

respectively. Φ is analogous to the argument of a complex 
number, but is unique only in the range [0, π] because any value 
greater than π can be reduced to this range by reversing the 
eigenaxis. μ is a pure quaternion and identifies the direction in 
three-space of the hypercomplex number’s vector part. The 
requirement for μ is ∣μ∣ = 1. In case of orthogonality the 
eigenangle Φ is equal to π/2. 

From here on in this publication each input, output or internal 
signal and filter coefficient will be encoded as a real (R), 
complex (C) or bicomplex (biC) number. 

III. BICOMPLEX ORTHOGONAL DIGITAL FILTER DESIGN 
PROCEDURE OUTLINE 

In [24], a method of complex transformation is proposed, 
which enables orthogonal complex filters with a canonic 
number of elements to be obtained. In accordance with this 
method, when the variable z in an N-order real coefficient 
digital transfer function HR(z) is substituted by: 

 1 1 12 ,
j

z z e jz
π

− − −= =  (10) 

the complex coefficient orthogonal transfer function HC (z) will 
be obtained. It has alternately changing coefficients, i.e., real 
and imaginary, and can be easily represented by two 2N-order 
real coefficient transfer functions: 

 
1 1

1 2( ) ( ) ( ) ( ).z jz
R C R RH z H z H z jH z

− −=→ = +  (11) 

If HR (z) is low-pass (LP), HR1 (z) and HR2 (z) will both be of 
band-pass (BP) type. However, a high-pass (HP) HR (z) will 
produce both BP and band-stop (BS) transfer functions. 

Having two inputs and two outputs, an orthogonal complex 
filter is able to realise four real coefficients transfer functions at 
its different outputs, which are equal in couples as is apparent 
from Fig. 1. 

The orthogonal complex transformation in (10), with the 
vector unit i added to it and applied on a complex-coefficient 
orthogonal transfer function HC (z), will result in an orthogonal 
bicomplex transfer function: 

 
1 1

( ) ( ).z ijz
C biCH z H z

− −=→  (12) 

An N-order bicomplex orthogonal transfer function HbiC (z) 
can be represented by its scalar part HS (z) and vector part HV (z), 
both of these being complex coefficient functions of 2N-order. 
Additionally, HbiC (z) can be also represented via four real-
coefficient transfer functions Hi(z), i = 1÷4 of 4N-order, which 
compose the scalar and vector parts: 

 [ ] [ ]1 2 3 4

1 2 3 4

( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ).

biC S VH z H z iH z

H z jH z i H z jH z
H z jH z iH z kH z

= + =

= + + + =

= + + +

 (13) 
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Fig. 1. Block diagram of a complex filter [3]. 
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Fig. 2. Block diagram of a bicomplex filter. 

In accordance with bicomplex number arithmetic, the scalar 
HS (z) and vector HV (z) parts can be derived as follows: 

 

1( ) ( ) ( ) ;2
1( ) ( ) ( ) .2

S biC biC

V biC biC

H z H z H z

H z H z H zi

+

+

 = + 

 = − 

 (14) 

Applying the mathematical rules of complex functions, the 
real and imaginary parts of HS (z) and HV (z), i.e., Hi (z) 
(i = 1÷4), can be determined to be: 

 

*
1

*
2

*
3

*
4

1( ) ( ) ( ) ;2
1( ) ( ) ( ) ;2

1( ) ( ) ( ) ;2
1( ) ( ) ( ) .2

S S

S S

V V

V V

H z H z H z

H z H z H zj

H z H z H z

H z H z H zj

 = + 

 = − 

 = + 

 = − 

 (15) 

In Fig. 2, a block diagram of an orthogonal bicomplex filter 
is shown. Having four inputs and four outputs, it will have 
sixteen fourth-order real-coefficient transfer functions 
altogether, four by four equal with ± signs. 

The design procedure thus presented extends a complex 
orthogonal digital filter to a bicomplex one. It is then 
straightforward to directly accomplish the circuit 
transformation of a real coefficient transfer function into a 
bicomplex orthogonal one: 

 
1 1 1( )( ) ( ).z i z jz

R biCH z H z
− − −= +→  (16) 

However, instead of using the direct transformation (16) in 
this work we will first derive a complex orthogonal digital 

transfer function starting from a real coefficient one and then 
design the corresponding bicomplex orthogonal digital transfer 
function. This approach enables issues such as the canonicity 
and sensitivity of the three structures – real, complex and 
bicomplex – to be compared and contrasted. 

IV. BILINEAR ORTHOGONAL BICOMPLEX  
FILTER DERIVATION 

Two of the best well-investigated canonic, low-sensitivity, 
free of limit cycles, bilinear real coefficient filters, named 
MHNS and LS11 [25], were selected and investigated 
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+ 
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+ 

In  

(HP) 

(a) (b)  
Fig. 3. Bilinear real sections: (a) MHNS-based; (b) LS11-based [25]. 

in this publication. Both are universal real digital filters, i.e., 
simultaneously realising LP and HP outputs (see Fig. 3). Their 
magnitude responses are unity for DC, and Nyquist’s frequency 
in the case of LP and HP transfer functions, respectively, thus 
providing zero magnitude sensitivity. Since the experimental 
results for the HP outputs of both filters are similar, only those 
for the LP real transfer functions are discussed in the present 
study. 

After the transformation (10) is applied to the LP real 
coefficient transfer functions, the orthogonal complex transfer 
functions are obtained and then represented by their real and 
imaginary parts. For the MHNS filter this is: 

 

1 1 11

1 1

1 2
22 1

2 2 2 2

11 1 1( ) 2 21 1

( ) ( ) ( )

(1 ) (1 )1 ,2 21 1

MHNS z jz
R

MHNS MHNS MHNS
C R R

jzzH z
z jz

H z H z jH z

z zj
z z

− −
−−

=
− −

− −

− −

+− α + − α= → =
− α − α

= = + =

− α − α− α= +
+ α + α

 (17) 

and for the LS11 filter: 

 

( ) ( )
1 1 11

11
1 1

11 11 11
1 2
2 1

2 2 2 2

11( ) 2 21 1 1 1

( ) ( ) ( )

1 (1 ) (2 ) .2 21 (1 ) 1 (1 )

LS z jz
R

LS LS LS
C R R

jzzH z
z jz

H z H z jH z

z zj
z z

− −
−−

=
− −

− −

− −

+β β+= → =
− − β − − β

= = + =

− − β − ββ β= +
+ − β + − β

 (18) 

However, instead of using the direct transformation (16), in 
this study we will first derive a complex orthogonal digital 
transfer function starting from a real coefficient one and then 
design the corresponding bicomplex orthogonal digital transfer 
function. This approach enables issues such as the canonicity 
and sensitivity of the three structures – real, complex and 
bicomplex – to be compared and contrasted. 

The bilinear orthogonal complex MHNS- and LS11-based 
filter structures are shown in Fig. 4 and Fig. 5, respectively.  
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Fig. 4. Bilinear orthogonal complex MHNS-based filter [25].  
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Fig. 5. Bilinear orthogonal complex LS11-based filter [25]. 

The bicomplex orthogonal transformation (12) proposed in 
Section III, applied to the complex orthogonal transfer 
functions, (17) and (18), will result in bicomplex orthogonal 
transfer functions, which can be represented by their scalar and 
vector parts (13). For the MHNS-based filter (Fig. 6) this is as 
follows: 

 
1 2 3 4

( ) ( ) ( )

( ) ( ) ( ) ( ) .

MHNS MHNS MHNS
biC S V

MHNS MHNS MHNS MHNS

H z H z iH z

H z jH z i H z jH z

= + =

   = + + +   
 (19) 

The four fourth-order real coefficients orthogonal transfer 
functions are as follows: 

 

3 4

1 4 4

2 2

2 4 4

2 2 3

3 4 4

2 1

4 4 4

1 1( ) ;2 1
(1 )( ) ;2 1
( 1)( ) ;2 1

1( ) .2 1

MHNS

MHNS

MHNS

MHNS

zH z
z

zH z
z

zH z
z

zH z
z

−

−

−

−

−

−

−

−

− α + α=
− α

α − α=
− α

α α −=
− α

α −=
− α

 (20) 

The same approach, when applied to the LS11-based filter 
(Fig. 7), produces the scalar and vector parts of the bicomplex 
orthogonal transfer function:  

 
1̀1 11 11

11 11 11 11
1 2 3 4

( ) ( ) ( )

( ) ( ) ( ) ( ) ,

LS LS LS
biC S V

LS LS LS LS

H z H z iH z

H z jH z H z jH z

= + =

   = + + +   
 (21) 
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Fig. 6 Bilinear orthogonal bicomplex MHNS-based filter. 
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Fig. 7. Bilinear orthogonal bicomplex LS11-based filter. 

and their components – the LS11-based real coefficients 
orthogonal transfer functions: 

 

( )
( )

( )
( )

( )
( )

( )
( )

3 4
11

1 4 4

2 2
11

2 4 4

2 32
11

3 4 4

2 1
11

4 4 4

1 1( ) ;2 1 1

1 11( ) ;2 1 1

1 1(1 )( ) ;2 1 1

1 1( ) .2 1 1

LS

LS

LS

LS

zH z
z

z
H z

z

z
H z

z

zH z
z

−

−

−

−

−

−

−

−

+ − ββ=
− − β

 − − β− β  =
− − β

 − β −− β  =
− − β

− β −
=

− − β

 (22) 

The bicomplex functions’ constituents thus obtained will be 
examined for their sensitivity to quantizing the coefficients to 
different word-lengths. 

V. SENSITIVITY INVESTIGATION 
In this section, the coefficient sensitivity of all three types of 

filter (real, complex and bicomplex) will be discussed. Since 
narrow-band filtering is the most likely to be used in practice, 
the orthogonal filters considered in this study become narrow-
band for α = 0.99 (β = 0.01). Canonic Sign-Digit (SD) code 
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representation and fixed-point arithmetic were used and the 
word-length was changed from infinite (ideal case) to 3 bits. 

The real LP prototype transfer functions were investigated 
under these conditions. It was shown that the coefficient 
sensitivity of the LS11 LP real bilinear filter is about one 
hundred times lower than that of the MHNS filter [25].  

Another conclusion from the results of the experiments is that 
the low-sensitivity properties of the real circuits are directly 
acquired by the complex-coefficient orthogonal structures. The 
question is then whether this will also be the case for bicomplex 
orthogonal filters, and if they will inherit the levels of sensitivity 
to coefficient quantization of their complex orthogonal 
progenitor.  

In order to answer this question, a number of computer 
simulations were conducted with respect to the bicomplex 
orthogonal transfer functions derived in the previous section. All 
real-coefficient transfer functions (20) for MHNS-based and (22) 
for LS11-based were simulated for the same pole disposition 
near the unit circle. This resulted in the narrow-band orthogonal 
digital selective systems. Poles p1,2 = ±0.99 and p3,4 = ±j0.99 are 
achieved for α = 0.99 (MHNS-based) and β = 0.01 (LS11-based) 
filters. In Figs. 8–11, experimental results for magnitudes of the 
LS11-based and MHNS-based orthogonal bicomplex transfer 
functions are shown for different coefficient word-lengths.  

 

 

 
Fig. 8. Magnitude responses of the bicomplex orthogonal real-coefficient 
functions H1(z) for different word-lengths: (a) LS11-based; (b) MHNS-based.  

 

 
Fig. 9. Magnitude responses of the bicomplex orthogonal real-coefficient 
functions H2(z) for different word-lengths: (a) LS11-based; (b) MHNS-based.  

 

 
Fig. 10. Magnitude responses of the bicomplex orthogonal real-coefficient 
functions H3(z) for different word-lengths: (a) LS11-based; (b) MHNS-based.  
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It can be seen that the orthogonal LS11-based bicomplex 
structure has an almost ideal magnitude response, even when the 
word-length is reduced to only 3 bits. The magnitude response 
of the MHNS-structure is considerably changed when the word-
length is limited to 3 bits and the filter ceases to be narrow-band. 
At 4 bits the magnitude response degrades even more, further 
worsening the selectivity of the filter. At this word-length of the 
coefficient α problems are also observed with respect to the 
magnitude unity gain and these are most clearly manifested in 
magnitudes |H3| (Fig. 10b) and |H4| (Fig. 11b). Тhe magnitude 
response attains a maximum value of only 0.8672 for |H3|, while 
for |H4| the unity gain is exceeded and reaches 1.133. The 
experiments for the LS11 bicomplex orthogonal algorithm, 
conducted under the same conditions, indicate preservation of 
the unity gain, as seen in the graphs of Fig. 8a, Fig. 9a, Fig. 10a, 
and Fig. 11a. The exact values differ from unity very slightly, 
but are within the anticipated computational error. 

VI. CONCLUSIONS 
This paper outlines a method of designing efficient 

orthogonal bicomplex DSP algorithms, commencing from a  

 

 
Fig. 11. Magnitude responses of the bicomplex orthogonal real-coefficient 
functions H4(z) for different word-lengths: (a) LS11-based; (b) MHNS-based.  

transfer function with complex or real coefficients. This novel 
method has universal applicability and is thus usable in the 
creation of canonical digital filters, regardless of their type or 
order.  

Due to the practical importance of narrow-band orthogonal 
filters, this type of transfer function was developed and 

investigated for different coefficient word-lengths. 
Experimental demonstrations reveal only minor changes in the 
magnitude response of the LS11 low sensitivity bicomplex 
orthogonal filter, using only three bits of SD-code. However, 
MHNS filters show significant degradation in magnitude 
response if word-length is decreased to four bits. Moreover, the 
resulting bicomplex orthogonal functions inherit sensitivity 
properties of the real and complex transfer functions. Following 
the approach proposed will lead to the derivation and 
investigation of a multitude of novel efficient bicomplex 
orthogonal filters. 

The presented method for the design of bicomplex 
orthogonal DSP algorithms is also appropriate for the derivation 
of second-order filters, which will provide cascade bicomplex 
orthogonal filter realisation of any order. Additionally, the 
possibility for simplification of the circuits and further 
parallelism will make them very attractive for 
telecommunications and other DSP applications and will ensure 
a considerable reduction in the complexity and cost of the 
equipment. 

A subject of future research might be the derivation of a 
generalized bicomplex transformation, which would make 
parallel processing of any pair of non-orthogonal complex 
signals possible. The use of new non-orthogonal waveforms is 
a promising advanced transmission method that will allow for 
the efficient allocation of wireless interface resources in modern 
telecommunications networks. Effective bicomplex filters can 
be a powerful tool for processing non-orthogonal waveforms as 
both single selective DSP algorithms and as building blocks of 
more sophisticated parallel digital processing systems, such as 
filter banks. 
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