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Abstract – In order to accurately estimate wind farm output and 
subsequently optimise it, a method of wind speed distribution 
approximation is suggested. The method is based on period-by-
period accumulation of wind speed measurements, transforming 
them into empirical probabilities, and observing the moving 
approximation to the expected power produced by the wind 
turbine or entire wind farm. A year is a minimal term during 
which wind statistics are to be accumulated. The sufficient validity 
and reliability of the wind speed distribution approximation is 
supported by controlling root-mean-square deviations and 
maximal absolute deviations with respect to the moving average of 
the expected power. The approximation quality can be regulated 
by adjusting constants defining the requirements to the moving 
deviations. 
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I. INTRODUCTION TO WIND POWER OPTIMIZATION 
Wind power is the most promising source of renewable and 

safe energy supply. Wind power optimization is a complex 
problem consisting of the three key components: modelling 
wind statistics (over the area where a wind farm is deployed) 
[1], [2], wind turbine construction optimization [1], [3], and the 
wind farm layout optimization problem [4], [5]. Each of these 
components is still an open problem influenced mainly by 
uncertainties [2], [6], [7]. The uncertainties are caused by wind 
speed volatility and seasonal fluctuations, as well as by 
variability in incorporating large amounts of wind power into a 
grid system [2], [8]. 

While the wind turbine construction has been attempted to be 
improved independently, the wind statistics of an area directly 
influences the wind farm layout optimization problem [6], [9]. 
Knowing the wind statistics of an area with an appropriate 
accuracy allows for grid balancing by matching the supply of 
energy to demand. Then the wind farm provides nearly the best 
efficiency of the investments in it and the electric power output. 
However, gathering wind statistics is itself an uneasy and long-
lasting procedure. Moreover, even after gathering and 
processing, wind statistics have irremovable variations and 
fluctuations due to weather unpredictability and inconstancy 
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[1], [6]. Therefore, wind power optimization still remains a 
relevant field of scientific research. 

II. BACKGROUND AND MOTIVATION 
Wind statistics of an area are gathered to build a wind speed 

distribution of the area whereon a wind farm is projected. The 
wind speed distribution is commonly modelled as the Weibull 
distribution of wind speed s  [1], [6], [9], [10]: 

 ( )
1

; ,
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ab sp s a b e
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  by  [ )0;s∈ ∞  (1) 

with a positive shape parameter b  and a positive scale 
parameter a . The shape parameter relates to a factual range of 
wind speeds: the range narrows as the shape parameter 
increases [10]. The scale parameter corresponds to the mean 
wind speed, although it also influences the factual range of wind 
speeds: as the scale parameter increases, the range becomes 
wider (stretching out to the right) and the mean wind speed 
grows [10]. Obviously, these parameters of wind speed 
distribution (1) cannot be assessed as point estimates. They are 
assessed as interval estimates, although the intervals are 
relatively narrow [2], [6]. However, the information about 
winds and weather of the wind farm area is accumulated 
permanently, so the shape and scale parameters may be 
additionally re-assessed (and made more accurate) even when 
the wind farm has been deployed and incorporated into a grid 
system. 

Accurate estimates of the shape and scale parameters are 
quite important. This is so because the expected power 
produced by the wind farm is very sensitive to small changes in 
wind speed distribution (1) defined by b  and a . In particular, 
the expected power produced by a wind turbine of type k   
is [6], [9] 

 ( ) ( )
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where function ( );w s k  shows a power in megawatts (MW) 

produced by this turbine at wind speed s . Function ( );w s k  is 
the power curve of the wind turbine of type k . Whereas a lot 
of scientific papers deal with wind power optimization based on 
the assumption that wind speed distribution (1) is known and 
fixed, the uncertainties in the shape and scale parameters are not 
taken into account. For instance, article [9] suggests a rapid 
method of maximizing the produced energy by simultaneously 
minimizing the costs dealing with uncertainties caused by the 
annual desired energy and the wind farm capacity assumptions. 
The computational core of the suggested method is that the 
expected power output is maximized via solving integer linear 
programming problems considering the shape and scale 
parameter constant. The method returns a row of optimal 
numbers of wind turbine types to be installed, and the respective 
annual energy along with costs spent on it. Thus, in an example 
with the five known and widespread wind turbines (2.3 MW 
Enercon E82 E2, Gamesa G128-4.5 MW, 2.5 MW Nordex 
N90/2500, 2 MW REpower MM82, Vestas V112-3.0 MW)  
by planning to produce maximum 50 000 MWh annually (see 
also [6], [9]), where 2b =  and 5a =  (which corresponds to 
the mean wind speed of 4.43 m/s), the optimal solution is to 
install 2 Enercon turbines and 21 REpower turbines. A wind 
farm of these 23 wind turbines will produce on average 
45 480.32904427 MWh annually, and deployment of this wind 
farm costs 67.39445656 million EUR. However, the same 
problem at 6a =  (the mean wind speed of 5.32 m/s) has a 
different solution. In this case, it is optimal to install just a single 
Nordex turbine and 13 REpower turbines which cost 
41.09368393 million EUR. Nevertheless, the expected annual 
energy then becomes even greater: it is 45 537.5008265 MWh, 
which exceeds the annual energy from the wind farm of the 23 
turbines by 0.1257 %. Here, almost the same energy costs 39 % 
less. Moreover, the corresponding wind farm is of just 14 wind 
turbines occupying fewer locations of the area. 

The described example might seem rather exaggerated 
because the inaccuracy in estimating the scale parameter from 
5 to 6 is uncommonly rough. However, the solution under a 
more real uncertainty, when 5.1a =  (which corresponds to the 
mean wind speed 4.52 m/s), badly differs from the solution for

5a = . The expected annual energy in 45 671.7216983 MWh 
produced by 22 REpower turbines will cost 63.52656992 
million EUR. Once again, almost the same energy will cost 
5.74 % less than in the case with 5a = . 

Thus, estimation of wind speed distribution (1) via its 
parameters b  and a  should be extremely accurate and reliable 
to determine the stable expected power by (2). On the other 
hand, the wind speed distribution may be approximated 
directly, without tying to the Weibull distribution. In this case, 
no distribution parameters are required. The expected power is 
calculated numerically without knowing a mathematical 
description of the wind speed distribution curve. The only 
requirement is high reliability and validity of the approximated 
distribution. 

 

III. GOAL AND OBJECTIVES 
Issuing from practical unreliability of the shape and scale 

parameters of wind speed distribution (1), the goal is to suggest 
a method to approximate the wind speed distribution directly, 
without determining the distribution type and fitting it. To 
achieve the goal, a procedure of processing wind speed 
measurements is to be described first. The procedure is believed 
to give at least a rough discrete distribution of the wind speed. 
Second, the wind speed distribution approximation should be 
developed based on the procedure. The approximation will be 
expected to meet the requirement of its reliable validity.  
Finally, the method is to be discussed by comparing to the 
existing approach and the corresponding conclusions are to be 
made. 

IV. WIND SPEED MEASUREMENTS AND STATISTICS 
Wind speeds are usually measured with anemometers. The 

wind speed measurement accuracy denoted by µ  can achieve 
0.1 m/s. Therefore, let  

 s h= µ   by  max1,h h=  (3) 

be a discrete wind speed magnitude, where cut-out maxs h= µ  is a 
general cut-out speed (an ultimate wind speed, at which any of 
the wind turbine types used for deploying the wind farm is 
turned off). The set of wind speed magnitudes given by (3) 
starts from the lowest speed s h=  because 0s =  does not 
contribute to integral (2). Number maxh  of these magnitudes is 
defined by the cut-out speed. 

The power curve of the wind turbine of type k  is sampled 
into a set 

 ( );hkw w h k= µ   by  max1,h h= . (4) 

Then the probability of that wind speed s h= µ  registered at 
some time period is 

 ( )hP P h= µ   by  max1,h h=  (5) 

and the expected power produced by the wind turbine of type 
k  is 

 
max

1

h

k h hk
h

P w
=

ρ =∑  (6) 

instead of integral (2). 
Let us suppose that wind speed s h= µ  is registered (1)

hu  
times during the period of wind speed measurements. 
Obviously,  { }(1) 0hu ∈ .  In  practice,  it  is  convenient  to 
consider the period as one day (although a longer period as a 
week would not be rare). Then the very first rough distribution 
approximation is a set of relative frequencies 
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In fact, relative frequencies (7) are empirical probabilities (e.g., 
see [10]). 

The next day (or another short period) the wind speed is 
continued to be measured, and wind speed s h= µ  is registered 

(2)
hu  times, { }(2) 0hu ∈ . The second wind speed distribution 

approximation can use now both counts { } max(2)

1

h

h h
u

=
and { } max(1)

1
.

h

h h
u

=

Therefore, a set of empirical probabilities 
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becomes the following distribution approximation. On the third 
day (or another short period identical to the previous one) wind 
speed s h= µ  is registered (3)

hu  times, and the following set of 
empirical probabilities 

 

( )
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(1) (2) (3)
(3)

(1) (2) (3)

1
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+ +∑
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is determined, and so forth. The procedure of processing wind 
speed measurements should be repeated for a year. Without 
losing generality, it can be stated that after wind speed s h= µ  

is registered ( )m
hu  times on day m , the m -th approximation of 

the wind speed distribution is found by empirical probabilities 

 
max

( )

1( )

( )

1 1

m
j
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h h m
j

i
i j

u

P
u

=

= =

=
∑
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  by  max1,h h= , (10) 

where 1, 2, 3, ..., 365m = . 
The described routine is an accumulation of wind statistics, 

which allows controlling the consistency of the measurements 
using previous data. This is possible owing to the law of large 
numbers. If the wind speeds are measured daily at a high 
measurement rate, then the reliability and validity of empirical 
probabilities (10) will grow as m  increases. 

V. WIND SPEED DISTRIBUTION APPROXIMATION 
As the consistency of empirical probabilities (10) is expected 

to be tending to improve period by period (literally, day by day, 
in this case), there may be such day *m  after which the 
empirical probabilities are sufficient to approximate the wind 
speed distribution at an acceptable level. The sufficiency will 
be interpreted by using approximations to expected power (6). 
Thus, 

 
max

( ) ( )

1

h
m m

k h hk
h

P w
=

ρ =∑  (11) 

is an approximation to expected power (6) after the m-th period. 
As m  increases, approximation (11) must be more stable. This 
implies that a series of expected powers approximated by (6) 
for a few subsequent m’s (i.e., for a few recent periods) should 
have less variance than a series of the same length for the 
respective preceding m’s (i.e., for a few earlier periods). This 
principle is visually explained in Fig. 1. 

 
Fig. 1. A visual explanation of the principle of considering the expected power approximation to progress more stable. Each dot representing a day of measurements 
is an expected power by (11). The length of the measurements is a year, so there are 365 dots overall. The series of seven subsequent m’s (week by week) is used 
here. The unknown ground truth mathematical expectation is shown as a horizontal line. The week-length expected values are shown as short horizontal lines.  
The variance is apparently decreasing, and the short lines are “sticking” to the expectation. The sufficiency acceptable level is not shown, though. 
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Thus, let t∆  be a time window between measurement 
periods  

( )1 1l t− ∆ +  and l t∆ , 1, 2, 3, ...l =  

Then the average of the expected power approximations across 
this window is 

 ( )( )
( )

( )

1 1

11 1,
l t

m
k

m l t

l t l t
t

∆

= − ∆ +

ρ − ∆ + ∆ = ρ
∆ ∑ . (12) 

An example of how this average changes, being calculated 
week by week, is shown in Fig. 1 as short horizontal lines. 
Further, the root-mean-square deviation of the expected power 
approximation across window t∆  is the square root of its 
variance: 

( )( )1 1,l t l tρσ − ∆ + ∆ =


 

 ( )( )
( )

2( )

1 1

1 1 1,
l t

m
k

m l t

l t l t
t

∆

= − ∆ +

 = ρ −ρ − ∆ + ∆ ∆ ∑  . (13) 

Here, the most preferable case is 

 ( )( ) ( )( )1 1, 1, 1l t l t l t l tρ ρσ − ∆ + ∆ > σ ∆ + + ∆
 

 (14) 

for every 1, 2, 3, ...l =  Nevertheless, inequalities (14) are not 
sufficient to consider expected power approximation reliably 
valid. The matter is that if the root-mean-square deviations  
are too great, an acceptable stability of the expected power 
approximation may not be achieved. This is why the  
following two inequalities should additionally hold starting  
at some *l : 

 ( ) ( )( )
( )( )

* *
*

* *

1 1,
1 1,

l t l t
l

l t l t
ρσ − ∆ + ∆

η = < ε
ρ − ∆ + ∆

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 (15) 

and 

 ( ) ( )
( )( )

( )( )
* *

( )
* *

1 1,
*

* *

max 1 1,

1 1,

m
k

m l t l t
l t l t

l
l t l t

= − ∆ + ∆
ρ −ρ − ∆ + ∆

µ = < λε
ρ − ∆ + ∆





 (16) 

for some 0ε >  and 1λ  . In practice, it is relevant to set 
0.01ε = , 0.005ε = , or less.  

VI. SIMULATION 
It is quite obvious that the direct approximation of  

the wind speed distribution by accumulating statistics of 
measurements using statement (10) relies on the fact that 
expected power approximations (11) and their moving average  

(12) with its root-mean-square deviation (13) will obey 
conditions (14)–(16). At least, these conditions are desired to be 
true, although some violations for a few l  are not excluded.  
Thus, root-mean-square deviation (13) is not necessary to be a 
set of strictly decreasing values. A violation in inequalities  
(15) and (16) is not considered a crucial fail of the method 
likewise. 

For simulating the wind speed distribution approximation 
method, observations (measurements) of wind speed are 
conventionally made for a year because different seasons have 
their strong impact on the resulting wind speed distribution. For 
example, the Enercon E82 E2 (2.3 MW) wind turbine is taken. 
It is also assumed that the wind speed distribution is Weibull 
distribution (1) whose parameters are 2b =  and 5a =  (which 
nonetheless are pretended to be unknown for the observer). 
Therefore, the theoretical expected power is  

0.24448531 MW 

(surely, unknown for the observer also). 
First, a series of 365 instances with values 

( )0.24448531 0 0.1 .5ϑ⋅ ζ ++ ⋅    

 by  ( )0;1ζ∈  (17) 

is generated by random values ϑ  and ζ  drawn from the 
standard normal and uniform distributions, respectively. Their 
cumulative sum is a model of approximations (11). Figure 2 
shows how it progresses along with its moving average (12), 
root-mean-square deviation (13), and functions ( )lη  and ( )lµ . 
Second, a similar example by modelling counts  

{ }{ }max
365

( )
1 1

hm
h h m

u
= =

 

is presented in Fig. 3 by Fig. 4 and Fig. 5 for inequalities (15) 
and (16). 

It is likely that the simple simulation (Fig. 2) reflects fewer 
statistical peculiarities than the “deeper” simulation (Fig. 3), 
where the process is modelled from the very start, having  
just counts of wind speed registration. This may be the reason 
by which expected power approximations are “sticking” tighter 
to the expectation in the case of the “deeper” model.  
The moving root-mean-square deviations (13) decrease faster 
for Fig. 3 (see Fig. 4), although the decrement is not strict. 
Besides, it is worth noticing that the difference between 
functions ( )lη  and ( )lµ  is very small. Function ( )lµ , which 
shows maximal absolute deviations with respect to the moving 
average (12), only slightly dominates function ( )lη , which 
shows the ratio of the root-mean-square deviations to the 
moving average (12). Moreover, the domination sometimes is 
even violated (it can be clearly seen in Fig. 5). The sufficiency 
acceptable level is achieved quickly for both types of the 
simulation. 
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Fig. 2. An example of approximations (11) obtained by the cumulative sum of 365 values (17). The bounds defined by deviations (13) are shown as short lines. 

 
Fig. 3. Another example of approximations (11) obtained by generating wind speed registration counts. This model is far “deeper” compared to the previous one. 

1 7 14 21 28 35 42 49 56 63 70 77 84 91 98 105 112 119 126 133 140 147 154 161 168 175 182 189 196 203 210 217 224 231 238 245 252 259 266 273 280 287 294 301 308 315 322 329 336 343 350 357 364

0.236

0.237

0.238

0.239

0.24

0.241

0.242

0.243

0.244

0.245

0.246

0.247

0.248

0.249

0.25

0.251

0.252

0.253

0.254

0.255

0.256

m

( )m
kρ

98 105 112 119 126 133 140 147 154 161 168 175 182 189 196 203 210 217 224 231 238 245 252 259 266 273 280 287 294 301 308 315 322 329 336 343 350 357 364

0.243

0.2431

0.2432

0.2433

0.2434

0.2435

0.2436

0.2437

0.2438

0.2439

0.244

0.2441

0.2442

0.2443

0.2444

0.2445

0.2446

0.2447

0.2448

0.2449

0.245

1 7 14 21 28 35 42 49 56 63 70 77 84 91 98 105 112 119 126 133 140 147 154 161 168 175 182 189 196 203 210 217 224 231 238 245 252 259 266 273 280 287 294 301 308 315 322 329 336 343 350 357 364
0.216

0.218

0.22

0.222

0.224

0.226

0.228

0.23

0.232

0.234

0.236

0.238

0.24

0.242

0.244

0.246

0.248

0.25

0.252

0.254

0.256

0.258

0.26

0.262

0.264

0.266

0.268

m

( )m
kρ

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

0.011

0.012

0.013

0.014

0.015

0.016

l

( )( )1 1,l t l tρσ − ∆ + ∆


1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
0

0.005
0.01

0.015
0.02

0.025
0.03

0.035
0.04

0.045
0.05

0.055
0.06

0.065
0.07

0.075
0.08

0.085
0.09

0.095
0.1

0.105
0.11

0.115
0.12

0.125
0.13

l

( )lη

( )lµ



Electrical, Control and Communication Engineering 

________________________________________________________________________________________2020, vol. 16, no. 2 
 

70 
 

 
Fig. 4. Root-mean-square deviations (13) for the example in Fig. 3. The moving deviations quickly decrease similarly to those in Fig. 2, although not strictly. 

 
Fig. 5. Functions ( )lη  and ( )lµ  showing the progress of ratios in inequalities (15) and (16) for the example in Fig. 3. Both polylines decrease but not strictly. 

VII. DISCUSSION 
The simulation results seem to be very promising but they do 

not consider possible seasonal fluctuations of the average wind 
speed, gusts, unpredictable weather anomalies, etc. Therefore, 
a year is a minimal term during which wind statistics are to be 
accumulated. Even when inequalities (14)–(16) hold without 
violations, the measurements should last no less than a year, 
whichever ε  and λ  are. 

An important specificity issues from the trace of expected 
power approximations: while they generally satisfy conditions 
(14)–(16), the theoretical expected power unknown for the 
observer may be not so close. This effect is easily seen in Fig. 2, 
although the expected power approximations in Fig. 3 appear 
close enough to the unknown expectation (they are “sticking” 
tighter to the expectation as m  increases). This is a subtle 
drawback of the suggested method, which cannot remove a 
possible bias with respect to the unknown expectation. 

One should distinguish between the wind speed distribution 
approximation and expected power approximations. The final 
practical goal is to ascertain a reliably valid distribution that 
allows calculating the expected power accurately, whichever 
the configuration of the wind farm is. Nevertheless, the 
expected power approximations help process the wind statistics 
with a comprehensive outlook for the electric power output. 
They can relate as to a certain type of the wind turbine, as well 
as to an entire wind farm. 

VIII. CONCLUSION 
The suggested method of wind speed distribution 

approximation is based on period-by-period accumulation of 
wind speed measurements, transforming them into empirical 
probabilities, and observing the moving approximation to the 
expected power produced by the wind turbine or wind farm. 
The method does not involve any assumptions about the type of 
the distribution or its parameters, so it is named the direct 
approximation. As the wind turbine power curve is presumed to 
be accurate, then an accurate approximation of the expected 
power implies that the wind speed distribution is approximated 
accurately enough. The sufficient validity and reliability of the 
wind speed distribution approximation are supported by 
controlling root-mean-square deviations by (14) and (15) and 
maximal absolute deviations by (16) with respect to the moving 
average (12). The approximation quality can be regulated by 
adjusting constants ε  and λ  defining the requirements to the 
moving deviations. If the approximation accuracy is desired to 
be higher, these constants are to be decreased. Lesser Lower 
magnitudes of the constants better fit longer terms of 
measurements, and vice versa. 
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