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Abstract – A numerical method is suggested to find all local 
minima and the global minimum of an unknown single-variable 
function bounded on a given interval regardless of the interval 
length. The method has six inputs: three inputs defined 
straightforwardly and three inputs, which are adjustable. The 
endpoints of the initial interval and a formula for evaluating the 
single-variable function at any point of this interval are the 
straightforward inputs. The three adjustable inputs are a tolerance 
with the minimal and maximal numbers of subintervals. The 
tolerance is the secondary adjustable input. Having broken the 
initial interval into a set of subintervals, the three-point iterated 
half-cutting “gropes” around every local minimum by successively 
cutting off a half of the subinterval or dividing the subinterval in 
two. A range of subinterval sets defined by the minimal and 
maximal numbers of subintervals is covered by running the three-
point half-cutting on every set of subintervals. As a set of values of 
currently found local minima points changes less than by the 
tolerance, the set of local minimum points and the respective set of 
function values at these points are returned. The presented 
approach is applicable to whichever task of finding local extrema 
is. If primarily the purpose is to find all local maxima or the global 
maximum of the function, the presented approach is applied to the 
function taken with the negative sign. The presented approach is a 
significant and important contribution to the field of numerical 
estimation and approximate analysis. Although the method does 
not assure obtaining all local minima (or maxima) for any function, 
setting appropriate minimal and maximal numbers of subintervals 
makes missing some minima (or maxima) very unlikely. 

 
Keywords – Finding extrema, interval half-cutting, local 

minima, subintervals, unknown single-variable function. 

I. PRACTICAL ISSUES OF FINDING A MINIMUM 
Finding minima of a function whose equation is known is an 

easy academic task that can be fulfilled either by algebraic 
(symbolic) or numerical methods [1], [2]. In most practical 
problems, the equation of a function is unknown, so its 
derivatives are not available and neither a symbolic approach nor 
a numerical method is applicable [3], [4]. Another practical issue 
arises when a symbolic (exact) approach cannot be applied to a 
known function equation containing, e. g., analytically non-
differentiable parts [5], [6], and numerical methods are the way 
to minimize approximately, but computing function values 

                                                           
* Corresponding author. 
E-mail: romanukevadimv@gmail.com 

either takes unreasonably long time or is too expensive [7], [8]. 
Thus, no numerical method is applicable as there is no object 
(i. e., tabulated function) to which it might be applied. 

The most prominent examples of the inapplicability of the 
exact and numerical methods are the problem of fine-tuning 
hyperparameters and training parameters of neural networks 
[9], [10], continuous and discrete parameter adjustment for 
various algorithms [8], [11], [12], the problem of optimizing the 
phased array size and parameters of beamforming [13], [14], 
etc. In such examples, an objective function is unknown and its 
evaluation is either time-consuming or resource-consuming, or 
both (just like the cases of neural networks and phased arrays). 
The fact of the objective function is defined on a (known) 
discrete set (e. g., searching for an optimal size) does not matter. 
Using a numerical method always implies that the function is 
considered a finite set of values corresponding to a finite set of 
points to which those values are assigned. 

The existing methods of finding minimum without involving 
the single-variable function equation and function tiny-step 
evaluation rely on successively narrowing the range of values 
on the specified interval, which makes it relatively slow, but 
very robust [15], 16]. The method of golden-section search 
maintains the function values for four points whose three 
interval widths are in the golden ratio [17], [18]. These ratios 
are maintained for each iteration and are maximally efficient. 
For a strictly unimodal function with an extremum inside the 
interval, the golden-section search will find that extremum, 
while for an interval containing multiple extrema (possibly 
including the interval boundaries), it will converge to one of 
them. This is an obvious demerit of the method because one 
cannot be sure that an interval contains a single minimum and 
so other minima are just omitted (Fig. 1). 

The Fibonacci search technique is a similar algorithm to find 
the extremum (minimum or maximum) of a finite sequence of 
values that has a single local minimum or local maximum [19], 
[20]. The algorithm maintains a bracketing of the solution in 
which the length of the bracketed interval is a Fibonacci 
number. As the Fibonacci search technique is derived from the 
golden-section search, it also may fail in determining the global 
minimum (similarly to that shown in Fig. 1).  
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Another technique for finding the minimum of a unimodal 
function is the ternary search algorithm [21], [22]. A ternary 
search determines either that the minimum cannot be in the first 
third of the domain or that it cannot be in the last third of the 
domain, and then repeats on the remaining two thirds. The 
ternary search is slightly faster that the golden-section search, 
but it also may omit the global minimum (in the example in 
Fig. 1, the ternary search finds the local minimum and omits the 
global minimum). 

 

Fig. 1. An example of when the golden-section search finds a local minimum 
(the squared point to the right), whereas the global minimum (the circled point 
to the left) is omitted. 

 
The global minimum can be found by the genetic algorithm 

[23], [24]. The genetic algorithm based on imitating a biological 
evolution with selection and crossover of solution candidates is 
far more reliable in determining the minimum. For instance, the  

genetic algorithm finds the global minimum in Fig. 1, and, in a 
relatively more complex example, finds the global minimum in 
Fig. 2. However, often even the genetic algorithm fails to find 
the global minimum (Fig. 3). Besides, the genetic algorithm is 
far slower than both the golden-section search and ternary 
search algorithms as it must operate on rather a great deal of 
solution candidates. Therefore, if the function evaluation is 
expensive (in the sense of either computational time or a factual 
cost to evaluate a value of the function), the genetic algorithm 
is practically inappropriate (unacceptable). 

 
Fig. 2. An example of when both the golden-section search and ternary search 
find different local minima (the squared point minimum is found by the golden-
section search and the circled point minimum is found by the ternary search), 
whereas the global minimum (the triangled point to the left) is found only by 
the genetic algorithm. 

 
Fig. 3. An example of when both the ternary search and golden-section search find different local minima (the circled and squared points, respectively), and the genetic 
algorithm fails to find the global minimum (considering the function values, a local minimum found by the genetic algorithm and marked as the triangled point is pretty 
close to the global minimum but still it is not the global minimum; moreover, there is another local minimum which is even closer to the global minimum).

Apart from the need to determine the global minimum, often 
all local minima of an unknown function are required to be 
found. However, the mentioned methods allow determining (or 
locating) only one minimum on an interval. Meanwhile, the 
interval may contain other local minima among which the 
global minimum may be. To find all local minima on an 

interval, this interval should be broken into a subset of 
subintervals, on each of which no more than a single local 
minimum is supposed to be. Obviously, this supposition is not 
always true, so some local minima including the global one may 
be lost. 
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II. GOAL AND OBJECTIVES TO BE ACCOMPLISHED 
As the existing approaches are incapable of determining all 

local minima of an unknown single-variable function within 
any bounded interval, the goal is to develop a method by which 
they could be efficiently found regardless of the interval length. 
For this reason, the interval should be broken into narrower 
subintervals. To achieve the goal, the following objectives are 
to be accomplished: 

1. To impose specific conditions on the function and its 
extrema on the bounded interval. 

2. To suggest a method (algorithm #1) of determining a local 
minimum on the interval or returning a specific answer 
implying that the interval, apart from the local minimum, 
contains other extrema. 

3. To suggest a method (algorithm #2) of breaking the initial 
interval into a set of subintervals, for each of which a local 
minimum is found or the specific answer is returned by 
algorithm #1. Thus, algorithm #1 is to be incorporated into 
algorithm #2. 

4. To suggest a method (algorithm #3) of adjusting 
algorithm #2 so that all the local minima would be determined 
with an acceptable accuracy (tolerance) and no specific answer 
would be returned by algorithm #1. Algorithm #3 should 
incorporate algorithm #2 to be a novel approach of finding local 
minima of a single-variable function. 

5. To exemplify the suggested approach. 
6. To discuss applicability and significance of the approach. 
7. To make an appropriate conclusion on it. 

III. FUNCTION AND ITS EXTREMA ON A BOUNDED INTERVAL 
It is assumed that a function f(x) defined on interval [a; b] by 

b > a is bounded and not a piecewise constant function. 
Whether function f(x) is continuous on [a; b] or not, this 
function is supposed to have no points of jump discontinuity. In 

addition, it is supposed that the function has an extremum on 
open interval (a; b). However, this supposition may be false and 
so the function is either increasing or decreasing on interval 
[a; b]. The supposition about that the function is strictly 
unimodal with an extremum inside the interval is not made. 

In further consideration, referring to function f(x) implies 
calling to an external routine to calculate (or evaluate) its value 
at point x  rather than to the equation of the function. This is so 
because function f(x) is assumed to be unknown as it happens 
in overwhelming majority of practical tasks. 

IV. THREE-POINT INTERVAL HALF-CUTTING 
Why two points are insufficient to be probed in searching for 

a minimum is illustrated in Fig. 4. Therefore, the case with three 
points must be studied. Let these points x1, x2, x3 be selected 
uniformly within interval [a; b]: 

1
3

4 4
− +

= + =
b a a bx a ,  

2 1 4 2 2
− − +

= + = + =
b a b a a bx x a ,   

 ( )
3 2

3 3
4 4 4

⋅ −− +
= + = + =

b ab a a bx x a . (1) 

Alternatively, points (1) are calculated starting from the middle 
point: 

 2 2
+

=
a bx ,  2

1 2
+

=
a xx ,  2

3 2
+

=
x bx . (2) 

There are four inputs to algorithm #1: the interval endpoints a, 
b, a formula for evaluating function f(x) at any point x, and 
tolerance ε (a sufficiently small positive number). 

 

 
Fig. 4. Examples of when probing only two internal points (using the golden-section search in this case) leads to cutting the subinterval containing the least value 
of a function on a given interval. 

 
At the first (initial) step of algorithm #1, the function is 

evaluated at points (2) and the minimum of values 

 ( )1f x ,  ( )2f x ,  ( )3f x  (3) 

is found. Denote this minimum by *y . Point { }* 1 2 3, ,∈x x x x  at 
which this minimum is found is stored. Minimum value 

( )* *=y f x  is stored as well. Here, 2 1∆ = −x x x . 
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While ∆ > εx , the following routine is executed. If  

 ( ) ( ) ( )1 2 3f x f x f x  , (4) 

then 

 2=a x  (5) 

and (2) are re-specified. If  

 ( ) ( ) ( )1 2 3f x f x f x  , (6) 

then 

 2=b x  (7) 

and (2) are re-specified. If  

 ( ) ( ) ( ){ } ( )1 2 3 2min , , =f x f x f x f x , (8) 

then 

 1=a x ,  3=b x  (9) 

and (2) are re-specified. If  

 ( ) ( ) ( ){ } ( )1 2 3 2max , , =f x f x f x f x , (10) 

then algorithm #1 stops returning the specific answer implying 
that the interval, apart from the local minimum, contains other 
extrema. This answer is returned in the form of the empty set of 
function minimum ( * =∅M ) and two halves [a; x2] and [x2; b]. 
Otherwise, if (10) is false, the minimum of values (3) is found, 
values { }* *,x y  are stored, and new 2 1∆ = −x x x  is calculated. 

All the four cases of the routine conditions and their 
outcomes are illustrated in Fig. 5. Unlike using the golden-
section search, by which the interval is narrowed by 

5 1 1.618
2
+

≈  times, the interval by algorithm #1 becomes 

twice as narrowed. 
 

 
Fig. 5. The four possible cases and their outcomes issued from one of conditions (4), (6), (8), (10). 

In fact, algorithm #1 is a three-point interval half-cutting 
running, while ∆ > εx  unless condition (10) turns true. The 
returned output is either { }* * *,=M x y  or * =∅M  and two 
halves (subintervals) [a; x2] and [x2; b]. The flowsheet of 
algorithm #1 whose computational complexity is similar to that 
of the golden-section search [17] is as follows: 

 
1. Input a , b , ( )f x , ε . 
2. Specify points (2). 
3. Evaluate ( )f x  at points (2). 
4. Find the minimum *y  of values (3) and its minimum point 

*x . 
5. Calculate 2 1∆ = −x x x . 
6. While ∆ > εx  do: 

6.1. If (4) is true then assign (5) and re-specify 
points (2). 

6.2. If (6) is true then assign (7) and re-specify 
points (2). 
6.3. If (8) is true then assign (9) and re-specify 
points (2). 
6.4. If (10) is true then return * =∅M  and [ ]2;a x , 

[ ]2;x b . 
6.5. Find { }* *,x y  and calculate 2 1∆ = −x x x . 

7. Return { }* * *,=M x y . 
 
Algorithm #1 itself is insufficient to find all minima of a 

function. Nevertheless, owing to the third point, it can 
sometimes outperform any two-point search (at least by not 
returning a “false” local minimum and simultaneously losing a 
“real” local minimum like in the examples in Fig. 4). For 
instance, algorithm #1, similarly to the golden-section search, 
returns the “false” local minimum and loses the “real” local 
minimum in the left subplot example in Fig. 4, but it does not 

Condition (4) Condition (6) Condition (8) Condition (10) 
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make such a mistake for the middle and right subplot examples, 
for which algorithm #1 returns the two subintervals. These 
subintervals are to be further studied whether each contains 
minima. 

V. RUNNING THE THREE-POINT INTERVAL HALF-CUTTING  
ON A SET OF SUBINTERVALS 

As the initial interval [a; b] may contain multiple local 
minima, it is reasonable to break the initial interval into a set of 
equal-length subintervals, for each of which a local minimum 
would be found or the specific answer would be returned by 
algorithm #1. Denote the number of subintervals by N. These 
subintervals are 

 [ ]{ } 1
;

=

N
i i i

a b  (11) 

by 

 1 =a a ,  1
−

= +
b ab a

N
,  =Nb b  (12) 

and 

 1−=i ia b   by  −
= +i i

b ab a
N

  for 2,=i N . (13) 

There are five inputs to algorithm #2 (which will incorporate 
algorithm #1): the interval endpoints a, b, a formula for 
evaluating function f(x) at any point x, tolerance ε, the number 
of subintervals N. At the first step of algorithm #2, algorithm #1 
is applied to subinterval [ ];i ia b  for 1,=i N . If *x  is found for 

subinterval [ ];i ia b , i. e. * ≠ ∅M  for this subinterval, then the 
condition eliminating endpoints is checked. If  

 * − < εix a   or  * − < εix b  (14) 

then *x  is deleted as it is too close either to the left or right 
endpoint of the subinterval (and, thus, the function is supposed 
to have no “internal” minima on this subinterval). Otherwise, 

*x  is stored along with ( )*f x  as a local minimum on 

subinterval [ ];i ia b . If * =∅M  for subinterval [ ];i ia b , then 
algorithm #1 is applied to both halves  

 ;
2
+ 

  
i i

i
a ba   and  ;

2
+ 

  
i i

i
a b b . (15) 

For each of halves (15) the eliminating-endpoint condition is 
checked. A minimum (left )

*x , if it is found on subinterval  

 ;
2
+ 

  
i i

i
a ba , (16) 

is deleted if 

 (left )
* − < εix a   or  (left )

* 2
+

− < εi ia bx ; (17) 

otherwise, (left )
*x  is stored along with ( )(left )

*f x  as a local 

minimum on subinterval (16). A minimum (right)
*x , if it is found 

on subinterval  

 ;
2
+ 

  
i i

i
a b b , (18) 

is deleted if 

 (right)
* 2

+
− < εi ia bx   or  (right)

* − < εix b ; (19) 

otherwise, (right)
*x  is stored along with ( )(right)

*f x  as a local 
minimum on subinterval (18).  

At the second step of algorithm #2, all the local minima 
found on N subintervals (11) are aggregated into a set *X  

whose elements are sorted in ascending order. Let ( )* *=Y f X  
be a set of function values at the local minima in *X . If  

 ( ) ( )*max<f a f X  (20) 

then point x = a can be counted a local boundary minimum  
and  

 (obs)
* *=X X ,  { } (obs)

* *= X a X , (21) 

 (obs)
* *=Y Y ,  ( ){ } (obs)

* *= Y f a Y . (22) 

If 

 ( ) ( )*max<f b f X  (23) 

then point x = b can be counted a local boundary minimum  
and  

 (obs)
* *=X X ,  { }(obs)

* *= X X b , (24) 

 (obs)
* *=Y Y ,  ( ){ }(obs)

* *= Y Y f b . (25) 

At the end of the routine, algorithm #2 returns sets *X  and *Y . 
The flowsheet of algorithm #2 is as follows: 

 
1. Input a , b , ( )f x , ε , N . 

2. Break interval [ ];a b  into subintervals (11) by (12) and 
(13). 
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3. For 1,=i N  do: 
3.1.  Apply algorithm #1 to subinterval [ ];i ia b . 
3.2.  If * ≠ ∅M  then check: 

If (14) holds then delete *x ; 
Else store *x  and ( )*f x  as a local 

minimum on subinterval [ ];i ia b . 
Else  

Apply algorithm #1 to both halves (15). 
If * ≠ ∅M  for (16) then check: 

If (17) holds then 
delete (left )

*x ; 

Else store (left )
*x  and 

( )(left )
*f x  as a local 

minimum on 
subinterval (16). 

If * ≠ ∅M  for (18) then 
check: 

If (19) holds then 
delete (right)

*x ; 

Else store (right)
*x  and 

( )(right)
*f x  as a local 

minimum on 
subinterval (18). 

4. Aggregate all the local minima found on subintervals (11) 
into a set *X . 

5. Sort them in ascending order. 
6. Create a set ( )* *=Y f X . 
7. If (20) holds then fulfil (21) and (22). 
8. If (23) holds then fulfil (24) and (25). 
9. Return sets *X  and *Y . 

VI. COVERING A RANGE OF SUBINTERVAL SETS 
Algorithm #2, if number N is sufficiently great, returns all the 

local minima of a function including its local boundary minima, 
if any, satisfying inequalities (20), (23). But how to guess the 
sufficiently great number of subintervals? Inputting always 
very great numbers of subintervals into algorithm #2 will 
significantly slow down finding minima. Inputting a fewer 
number of subintervals may lead to losing some minima. 
Therefore, it is reasonable to try a set of these numbers to see 
whether new minima appear as number N is increased. 

There are six inputs to algorithm #3 (which will incorporate 
algorithm #2): the interval endpoints a, b, a formula for 
evaluating function f(x) at any point x, tolerance ε, the minimal 
number of subintervals minN , the maximal number of 
subintervals maxN . At the first step of algorithm #3, 
algorithm #2 is applied by min=N N . While * =∅M  and 

max<N N , the number of subintervals is increased by 1 and 
algorithm #2 is applied again. If * =∅M  at max=N N , then  

 ( ) ( ){ }* min ,=y f a f b  (26) 

and 

 * =x a   by  ( )* =y f a  (27) 

and 

 * =x b   by  ( )* =y f b , (28) 

whereupon algorithm #3 stops returning just a pair { }* *,x y . 
Otherwise, if a nonempty set *X  is found at some 1=N N  
(i. e., * ≠ ∅M  at 1=N N ), a counter of the number of 
subintervals is set at 1: j = 1. Besides, the found sets *X  and *Y  
are stored indicating the counter:  

 (1)
* *=X X ,  (1)

* *=Y Y . (29) 

Then, at the second step of algorithm #3, the number of 
subintervals is increased by 1 (while max<N N ) and counter j 
is increased by 1, whereupon algorithm #2 is applied by this 
new number of subintervals jN  and 

 ( )
* *=jX X ,  ( )

* *=jY Y . (30) 

If  

 ( ) ( 1)
* *

−=j jX X  (31) 

by 

 { }( 1) ( 1, )
* * 1

− −

=
=

Hj j h

h
X x  (32) 

and 

 { }( ) ( , )
* * 1=

=
Hj j h

h
X x , (33) 

then it is checked whether those H values in sets (32) and (33) 
are sufficiently close (or, being accurate to ε, are practically the 
same). Thus, if  

 ( , ) ( 1, )
* *1,

max −

=
− < εj h j h

h H
x x  (34) 

then algorithm #2 is applied by the number of subintervals 2 jN  
returning a set *X  denoted by *Z . If  

 ( )
* *= jZ X  (35) 

by 

 { }( )
* * 1=
=

Hh

h
Z z , (36) 

then it is checked whether those H values in sets (35) and (36) 
are sufficiently close. Thus, if  
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 ( ) ( , )
* *1,

max
=

− < εh j h

h H
z x  (37) 

then algorithm #3 stops returning 

{ }( 1) ( 1, )
* * * 1

− −

=
= =

Hj j h

h
X X x ,   

 { } ( ){ }( 1) ( 1, ) ( 1, )
* * * *1 1

− − −

= =
= = =

HHj j h j h

h h
Y Y y f x . (38) 

In fact, algorithm #3 covering a range of algorithm #2 runs is 
a three-point iterated interval half-cutting. It is worth noting that 
algorithm #3 does not return the specific answer. The specific 
answer is an internal object of algorithm #1 serving to divide a 
subinterval further. The flowsheet of algorithm #3 is as follows: 

 
1. Input a , b , ( )f x , ε , minN , maxN . 
2. Assign min 1= −N N . 
3. While * =∅M  and max<N N  do: 

3.1.  Increase N  by 1. 
3.2.  Apply algorithm #2. 

4. If * =∅M  then do: 
4.1.  Assign (26) — (28). 
4.2.  Return { }* * *,=M x y . 

5. Assign 1=j . 
6. Assign (29). 
7. For 1 max1,= +N N N  do: 

7.1.  Increase j by 1. 
7.2.  Apply algorithm #2. 
7.3.  Assign (30). 

If (31) holds by (32) and (33) then check: 
If (34) holds then apply algorithm #2 by 
the number of subintervals 2 jN ; 

Denote *X  by *X . 
If (35) holds by (36) then check: 

If (37) holds then: 
Decrease N by 1. 
Assign * =N N . 
Return N  and (38). 

8. If variable *N  does not exist, return null. 
 
If the task is to find the global minimum, then it is fulfilled 

as a trivial appendix to the three-point iterated interval half-
cutting. As sets (38) are obtained, the global minimum function 
value 

 ( 1, )
** *1,

min −

=
= j h

h H
y y  (39) 

is calculated and every global minimum point 

 { }( 1, )
** * 1

−

=
∈

Hj h

h
x x  (40) 

at which 

 ( )** **=y f x  (41) 

is extracted. If the global minimum is to be found purely on 
open interval (a; b), then the global minimum function value 

 ( ) ( ){ }{ }( 1)
** *min \ ,−= jy Y f a f b  (42) 

is calculated and global minimum point (40) at which (41) holds 
is extracted. 

To find approximate values of all minimum points and 
respective minimum function values, the property of the 
function differentiability is unnecessary. It is sufficient that the 
function (regardless of whether it is unknown or known) be 
bounded and have a finite number of local minimum points. 

 
Theorem 1. If a bounded function ( )f x  has a finite number 

of local minimum points on interval [a; b], then *∃ N  such that 
algorithm #2 returns this number of approximate local 
minimum points which differ from the true local minimum 
points at most by ε. 

Proof. If the number of minima is finite, then interval [a; b] 
can be broken by algorithm #2 into *N  equal-length 
subintervals such that each of the subintervals either will 
contain a single minimum point without local maxima points or 
will not contain local minimum points at all. Then, in the first 
case, one of the conditions by (4), (6), (8) turns true on every 
step of algorithm #1 giving eventually an approximate local 
minimum point that differs from the true local minimum point 
at most by ε. In the second case, when no local minimum points 
are within the subinterval, one of the conditions by (4), (6), (10) 
turns true on every step of algorithm #1 that eventually deletes 
every candidate to be a local minimum point by using (17) or 
(19). The theorem has been proved. 

VII. EXAMPLES 
To compare performance of three-point iterated interval half-

cutting to that of the golden-section search, ternary search, 
genetic algorithm, specific instances are taken that have 
multiple extrema [2], [3], [8]. The respective experiments 
confirm that the suggested method outperforms those and other 
approaches. An example of applying the three-point iterated 
interval half-cutting is shown in Fig. 6, where a toy function 

 ( ) ( ) ( ) ( )0.96sin 0.322sin 13.24 cos 3.36 −= xf x x x e  (43) 

is used to model the problem of minimization on interval 
[−2.15; 1.1]. The 12 local minima (including the global 
minimum) are found by N = 9, i. e. by breaking the initial 
interval just into 9 subintervals. Another, seemingly a more 
difficult example, is presented in Fig. 7 for a toy function  

 ( ) ( ) ( ) ( ) ( )0.05sin 4 0.08 cos sin 0.5cos cos 2
7

− π = − 
 

x x x xf x x x e e  (44) 
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minimized on interval [−18.8; 4], where the function (surely, 
unbeknown to a researcher in reality) has a sort of modulation. 
The 48 local minima (including the global minimum) are found 
here by N = 77 (by breaking the initial interval into 77 
subintervals). Fig. 8 shows the result of applying the three-point 
iterated interval half-cutting to find all the local minima of a toy 
function  

( ) ( ) ( ) ( )0.25sin3cos sin 20 cos 8
7

− π = − − 
 

xf x x x e  

 ( ) ( ) ( )1.2sin 222sin sin 5 cos 6
6

− π − + 
 

xx x e  (45) 

on interval [3; 3.6]. Compared to the example in Fig. 7 with 
function (44), the example in Fig. 8 with function (45) can be 
thought of as a more computationally expensive: the algorithm 
takes here 116 subintervals (by 50.65 % greater than that in 
Fig. 7) to find all the 41 local minima (by 14.58 % less than that 
in Fig. 7). 

 

 
Fig. 6. The 12 local minima, including both the local boundary minima and the global minimum (marked by the dotted line downward) of function (43) on interval 
[−2.15; 1.1]. 

 

 
Fig. 7. The 48 local minima, including only the local right boundary minima and the global minimum (marked by the dotted line downward) of function (44) on 
interval [−18.8; 4]. 
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Fig. 8. The 41 local minima, including both the local boundary minima and the global minimum (marked by the dotted line downward) of function (45) on interval 
[3; 3.6]. 

VIII. DISCUSSION 
The presented approach is applicable to whichever task of 

finding local extrema is. It is clear that if primarily the purpose 
is to find all local maxima or the global maximum of the 
function, the presented approach is applied to function −f(x). 

If the function is unimodal, the three-point iterated interval 
half-cutting is slower than the golden-section search. The 
slowdown is relatively significant if to measure the 
computational time for a long series of the minimization 
problems. Nevertheless, the function unimodality is a rare 
occasion in real-world practice. There are a few local extrema 
at least. Even if not all local minima (or maxima) are to be 
found, the golden-section search may fail to “hit” the global 
minimum (or maximum), whereas the three-point iterated 
interval half-cutting completes the task. 

Without knowing additional information about the function, 
unfortunately, there cannot be assurance of that every local 
minimum will be included into the output set *X . Doubling the 
number of subintervals to see whether the same minima remain, 

when (35) and (37) are expected to be true, may fail in a case if 
the function (strictly speaking, the data) is overly fluctuating 
(something similar to Figs. 7 and 8). Then set *X  lacks some 
minima. If a researcher deals with presumably highly 
fluctuating functions (data), the part in algorithm #3 can be 
slightly modified: if (34) holds then algorithm #2 can be applied 
by the number of subintervals mNj, where m > 2. Reversely, 
studying rare-fluctuating functions (data) may be more efficient 
if, for instance, m = 1.5 or about that. 

The presented approach is a significant and important 
contribution to the field of numerical estimation and 
approximate analysis. In real-world contemporary practice, it 
must serve as a computationally efficient tool for fine-tuning 
neural networks, adjusting parameters of complex systems (like 
radars, radio telescopes, massive engines, big-scaled 
constructions, etc.), and optimal parametrization at all. 
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IX. CONCLUSION 
The suggested method of three-point iterated interval half-

cutting is an approach to finding all local extrema of an 
unknown single-variable function bounded on a given interval 
regardless of the interval length. The three of six inputs of the 
method routine are straightforwardly defined, whereas the 
tolerance with the minimal and maximal numbers of 
subintervals are adjustable. These subinterval numbers are 
primary adjustable inputs. Although the method does not assure 
obtaining all local minima (or maxima) for any function, setting 
appropriate minimal and maximal numbers of subintervals 
makes missing some minima (or maxima) very unlikely. The 
tolerance is the secondary adjustable input. If the minimal and 
maximal numbers of subintervals are selected too small, setting 
whichever small tolerance cannot help in finding every local 
extremum. 

The endpoints of the initial interval and a formula for 
evaluating the single-variable function at any point of this 
interval are inputted along with the three adjustable inputs. 
Having broken the initial interval into a set of subintervals, the 
three-point iterated interval half-cutting “gropes” around every 
local minimum by successively cutting off a half of the 
subinterval or dividing the subinterval in two. A range of 
subinterval sets defined by the minimal and maximal numbers 
of subintervals is covered by running the three-point interval 
half-cutting on every set of subintervals. As a set of values of 
currently found local minima points changes no more than by 
the tolerance, the set of local minimum points and the respective 
set of minimum values of the function are returned. 
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