
Electrical, Control and Communication Engineering
ISSN 2255-9159 (online)
ISSN 2255-9140 (print)
2022, vol. 18, no. 1, pp. 27–36
https://doi.org/10.2478/ecce-2022-0004
https://content.sciendo.com

27

©2022 Vadim Romanuke.
This is an open access article licensed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0).

Three-Point Iterated Interval Half-Cutting for Finding
All Local Minima of Unknown

Single-Variable Function
Vadim Romanuke* (Vinnytsia Institute of Trade and Economics of State University of Trade and Economics,

Vinnytsia, Ukraine)

Abstract – A numerical method is suggested to find all local
minima and the global minimum of an unknown single-variable
function bounded on a given interval regardless of the interval
length. The method has six inputs: three inputs defined
straightforwardly and three inputs, which are adjustable. The
endpoints of the initial interval and a formula for evaluating the
single-variable function at any point of this interval are the
straightforward inputs. The three adjustable inputs are a tolerance
with the minimal and maximal numbers of subintervals. The
tolerance is the secondary adjustable input. Having broken the
initial interval into a set of subintervals, the three-point iterated
half-cutting “gropes” around every local minimum by successively
cutting off a half of the subinterval or dividing the subinterval in
two. A range of subinterval sets defined by the minimal and
maximal numbers of subintervals is covered by running the three-
point half-cutting on every set of subintervals. As a set of values of
currently found local minima points changes less than by the
tolerance, the set of local minimum points and the respective set of
function values at these points are returned. The presented
approach is applicable to whichever task of finding local extrema
is. If primarily the purpose is to find all local maxima or the global
maximum of the function, the presented approach is applied to the
function taken with the negative sign. The presented approach is a
significant and important contribution to the field of numerical
estimation and approximate analysis. Although the method does
not assure obtaining all local minima (or maxima) for any function,
setting appropriate minimal and maximal numbers of subintervals
makes missing some minima (or maxima) very unlikely.

Keywords – Finding extrema, interval half-cutting, local

minima, subintervals, unknown single-variable function.

I. PRACTICAL ISSUES OF FINDING A MINIMUM
Finding minima of a function whose equation is known is an

easy academic task that can be fulfilled either by algebraic
(symbolic) or numerical methods [1], [2]. In most practical
problems, the equation of a function is unknown, so its
derivatives are not available and neither a symbolic approach nor
a numerical method is applicable [3], [4]. Another practical issue
arises when a symbolic (exact) approach cannot be applied to a
known function equation containing, e. g., analytically non-
differentiable parts [5], [6], and numerical methods are the way
to minimize approximately, but computing function values

* Corresponding author.
E-mail: romanukevadimv@gmail.com

either takes unreasonably long time or is too expensive [7], [8].
Thus, no numerical method is applicable as there is no object
(i. e., tabulated function) to which it might be applied.

The most prominent examples of the inapplicability of the
exact and numerical methods are the problem of fine-tuning
hyperparameters and training parameters of neural networks
[9], [10], continuous and discrete parameter adjustment for
various algorithms [8], [11], [12], the problem of optimizing the
phased array size and parameters of beamforming [13], [14],
etc. In such examples, an objective function is unknown and its
evaluation is either time-consuming or resource-consuming, or
both (just like the cases of neural networks and phased arrays).
The fact of the objective function is defined on a (known)
discrete set (e. g., searching for an optimal size) does not matter.
Using a numerical method always implies that the function is
considered a finite set of values corresponding to a finite set of
points to which those values are assigned.

The existing methods of finding minimum without involving
the single-variable function equation and function tiny-step
evaluation rely on successively narrowing the range of values
on the specified interval, which makes it relatively slow, but
very robust [15], 16]. The method of golden-section search
maintains the function values for four points whose three
interval widths are in the golden ratio [17], [18]. These ratios
are maintained for each iteration and are maximally efficient.
For a strictly unimodal function with an extremum inside the
interval, the golden-section search will find that extremum,
while for an interval containing multiple extrema (possibly
including the interval boundaries), it will converge to one of
them. This is an obvious demerit of the method because one
cannot be sure that an interval contains a single minimum and
so other minima are just omitted (Fig. 1).

The Fibonacci search technique is a similar algorithm to find
the extremum (minimum or maximum) of a finite sequence of
values that has a single local minimum or local maximum [19],
[20]. The algorithm maintains a bracketing of the solution in
which the length of the bracketed interval is a Fibonacci
number. As the Fibonacci search technique is derived from the
golden-section search, it also may fail in determining the global
minimum (similarly to that shown in Fig. 1).

Electrical, Control and Communication Engineering

__2022, vol. 18, no. 1

28

Another technique for finding the minimum of a unimodal
function is the ternary search algorithm [21], [22]. A ternary
search determines either that the minimum cannot be in the first
third of the domain or that it cannot be in the last third of the
domain, and then repeats on the remaining two thirds. The
ternary search is slightly faster that the golden-section search,
but it also may omit the global minimum (in the example in
Fig. 1, the ternary search finds the local minimum and omits the
global minimum).

Fig. 1. An example of when the golden-section search finds a local minimum
(the squared point to the right), whereas the global minimum (the circled point
to the left) is omitted.

The global minimum can be found by the genetic algorithm

[23], [24]. The genetic algorithm based on imitating a biological
evolution with selection and crossover of solution candidates is
far more reliable in determining the minimum. For instance, the

genetic algorithm finds the global minimum in Fig. 1, and, in a
relatively more complex example, finds the global minimum in
Fig. 2. However, often even the genetic algorithm fails to find
the global minimum (Fig. 3). Besides, the genetic algorithm is
far slower than both the golden-section search and ternary
search algorithms as it must operate on rather a great deal of
solution candidates. Therefore, if the function evaluation is
expensive (in the sense of either computational time or a factual
cost to evaluate a value of the function), the genetic algorithm
is practically inappropriate (unacceptable).

Fig. 2. An example of when both the golden-section search and ternary search
find different local minima (the squared point minimum is found by the golden-
section search and the circled point minimum is found by the ternary search),
whereas the global minimum (the triangled point to the left) is found only by
the genetic algorithm.

Fig. 3. An example of when both the ternary search and golden-section search find different local minima (the circled and squared points, respectively), and the genetic
algorithm fails to find the global minimum (considering the function values, a local minimum found by the genetic algorithm and marked as the triangled point is pretty
close to the global minimum but still it is not the global minimum; moreover, there is another local minimum which is even closer to the global minimum).

Apart from the need to determine the global minimum, often
all local minima of an unknown function are required to be
found. However, the mentioned methods allow determining (or
locating) only one minimum on an interval. Meanwhile, the
interval may contain other local minima among which the
global minimum may be. To find all local minima on an

interval, this interval should be broken into a subset of
subintervals, on each of which no more than a single local
minimum is supposed to be. Obviously, this supposition is not
always true, so some local minima including the global one may
be lost.

Electrical, Control and Communication Engineering

__2022, vol. 18, no. 1

29

II. GOAL AND OBJECTIVES TO BE ACCOMPLISHED
As the existing approaches are incapable of determining all

local minima of an unknown single-variable function within
any bounded interval, the goal is to develop a method by which
they could be efficiently found regardless of the interval length.
For this reason, the interval should be broken into narrower
subintervals. To achieve the goal, the following objectives are
to be accomplished:

1. To impose specific conditions on the function and its
extrema on the bounded interval.

2. To suggest a method (algorithm #1) of determining a local
minimum on the interval or returning a specific answer
implying that the interval, apart from the local minimum,
contains other extrema.

3. To suggest a method (algorithm #2) of breaking the initial
interval into a set of subintervals, for each of which a local
minimum is found or the specific answer is returned by
algorithm #1. Thus, algorithm #1 is to be incorporated into
algorithm #2.

4. To suggest a method (algorithm #3) of adjusting
algorithm #2 so that all the local minima would be determined
with an acceptable accuracy (tolerance) and no specific answer
would be returned by algorithm #1. Algorithm #3 should
incorporate algorithm #2 to be a novel approach of finding local
minima of a single-variable function.

5. To exemplify the suggested approach.
6. To discuss applicability and significance of the approach.
7. To make an appropriate conclusion on it.

III. FUNCTION AND ITS EXTREMA ON A BOUNDED INTERVAL
It is assumed that a function f(x) defined on interval [a; b] by

b > a is bounded and not a piecewise constant function.
Whether function f(x) is continuous on [a; b] or not, this
function is supposed to have no points of jump discontinuity. In

addition, it is supposed that the function has an extremum on
open interval (a; b). However, this supposition may be false and
so the function is either increasing or decreasing on interval
[a; b]. The supposition about that the function is strictly
unimodal with an extremum inside the interval is not made.

In further consideration, referring to function f(x) implies
calling to an external routine to calculate (or evaluate) its value
at point x rather than to the equation of the function. This is so
because function f(x) is assumed to be unknown as it happens
in overwhelming majority of practical tasks.

IV. THREE-POINT INTERVAL HALF-CUTTING
Why two points are insufficient to be probed in searching for

a minimum is illustrated in Fig. 4. Therefore, the case with three
points must be studied. Let these points x1, x2, x3 be selected
uniformly within interval [a; b]:

1
3

4 4
− +

= + =
b a a bx a ,

2 1 4 2 2
− − +

= + = + =
b a b a a bx x a ,

 ()
3 2

3 3
4 4 4

⋅ −− +
= + = + =

b ab a a bx x a . (1)

Alternatively, points (1) are calculated starting from the middle
point:

 2 2
+

=
a bx , 2

1 2
+

=
a xx , 2

3 2
+

=
x bx . (2)

There are four inputs to algorithm #1: the interval endpoints a,
b, a formula for evaluating function f(x) at any point x, and
tolerance ε (a sufficiently small positive number).

Fig. 4. Examples of when probing only two internal points (using the golden-section search in this case) leads to cutting the subinterval containing the least value
of a function on a given interval.

At the first (initial) step of algorithm #1, the function is

evaluated at points (2) and the minimum of values

 ()1f x , ()2f x , ()3f x (3)

is found. Denote this minimum by *y . Point { }* 1 2 3, ,∈x x x x at
which this minimum is found is stored. Minimum value

()* *=y f x is stored as well. Here, 2 1∆ = −x x x .

Electrical, Control and Communication Engineering

__2022, vol. 18, no. 1

30

While ∆ > εx , the following routine is executed. If

 () () ()1 2 3f x f x f x  , (4)

then

 2=a x (5)

and (2) are re-specified. If

 () () ()1 2 3f x f x f x  , (6)

then

 2=b x (7)

and (2) are re-specified. If

 () () (){ } ()1 2 3 2min , , =f x f x f x f x , (8)

then

 1=a x , 3=b x (9)

and (2) are re-specified. If

 () () (){ } ()1 2 3 2max , , =f x f x f x f x , (10)

then algorithm #1 stops returning the specific answer implying
that the interval, apart from the local minimum, contains other
extrema. This answer is returned in the form of the empty set of
function minimum (* =∅M) and two halves [a; x2] and [x2; b].
Otherwise, if (10) is false, the minimum of values (3) is found,
values { }* *,x y are stored, and new 2 1∆ = −x x x is calculated.

All the four cases of the routine conditions and their
outcomes are illustrated in Fig. 5. Unlike using the golden-
section search, by which the interval is narrowed by

5 1 1.618
2
+

≈ times, the interval by algorithm #1 becomes

twice as narrowed.

Fig. 5. The four possible cases and their outcomes issued from one of conditions (4), (6), (8), (10).

In fact, algorithm #1 is a three-point interval half-cutting
running, while ∆ > εx unless condition (10) turns true. The
returned output is either { }* * *,=M x y or * =∅M and two
halves (subintervals) [a; x2] and [x2; b]. The flowsheet of
algorithm #1 whose computational complexity is similar to that
of the golden-section search [17] is as follows:

1. Input a , b , ()f x , ε .
2. Specify points (2).
3. Evaluate ()f x at points (2).
4. Find the minimum *y of values (3) and its minimum point

*x .
5. Calculate 2 1∆ = −x x x .
6. While ∆ > εx do:

6.1. If (4) is true then assign (5) and re-specify
points (2).

6.2. If (6) is true then assign (7) and re-specify
points (2).
6.3. If (8) is true then assign (9) and re-specify
points (2).
6.4. If (10) is true then return * =∅M and []2;a x ,

[]2;x b .
6.5. Find { }* *,x y and calculate 2 1∆ = −x x x .

7. Return { }* * *,=M x y .

Algorithm #1 itself is insufficient to find all minima of a

function. Nevertheless, owing to the third point, it can
sometimes outperform any two-point search (at least by not
returning a “false” local minimum and simultaneously losing a
“real” local minimum like in the examples in Fig. 4). For
instance, algorithm #1, similarly to the golden-section search,
returns the “false” local minimum and loses the “real” local
minimum in the left subplot example in Fig. 4, but it does not

Condition (4) Condition (6) Condition (8) Condition (10)

Electrical, Control and Communication Engineering

__2022, vol. 18, no. 1

31

make such a mistake for the middle and right subplot examples,
for which algorithm #1 returns the two subintervals. These
subintervals are to be further studied whether each contains
minima.

V. RUNNING THE THREE-POINT INTERVAL HALF-CUTTING
ON A SET OF SUBINTERVALS

As the initial interval [a; b] may contain multiple local
minima, it is reasonable to break the initial interval into a set of
equal-length subintervals, for each of which a local minimum
would be found or the specific answer would be returned by
algorithm #1. Denote the number of subintervals by N. These
subintervals are

 []{ } 1
;

=

N
i i i

a b (11)

by

 1 =a a , 1
−

= +
b ab a

N
, =Nb b (12)

and

 1−=i ia b by −
= +i i

b ab a
N

 for 2,=i N . (13)

There are five inputs to algorithm #2 (which will incorporate
algorithm #1): the interval endpoints a, b, a formula for
evaluating function f(x) at any point x, tolerance ε, the number
of subintervals N. At the first step of algorithm #2, algorithm #1
is applied to subinterval [];i ia b for 1,=i N . If *x is found for

subinterval [];i ia b , i. e. * ≠ ∅M for this subinterval, then the
condition eliminating endpoints is checked. If

 * − < εix a or * − < εix b (14)

then *x is deleted as it is too close either to the left or right
endpoint of the subinterval (and, thus, the function is supposed
to have no “internal” minima on this subinterval). Otherwise,

*x is stored along with ()*f x as a local minimum on

subinterval [];i ia b . If * =∅M for subinterval [];i ia b , then
algorithm #1 is applied to both halves

 ;
2
+ 

  
i i

i
a ba and ;

2
+ 

  
i i

i
a b b . (15)

For each of halves (15) the eliminating-endpoint condition is
checked. A minimum (left)

*x , if it is found on subinterval

 ;
2
+ 

  
i i

i
a ba , (16)

is deleted if

 (left)
* − < εix a or (left)

* 2
+

− < εi ia bx ; (17)

otherwise, (left)
*x is stored along with ()(left)

*f x as a local

minimum on subinterval (16). A minimum (right)
*x , if it is found

on subinterval

 ;
2
+ 

  
i i

i
a b b , (18)

is deleted if

 (right)
* 2

+
− < εi ia bx or (right)

* − < εix b ; (19)

otherwise, (right)
*x is stored along with ()(right)

*f x as a local
minimum on subinterval (18).

At the second step of algorithm #2, all the local minima
found on N subintervals (11) are aggregated into a set *X

whose elements are sorted in ascending order. Let ()* *=Y f X
be a set of function values at the local minima in *X . If

 () ()*max<f a f X (20)

then point x = a can be counted a local boundary minimum
and

 (obs)
* *=X X , { } (obs)

* *= X a X , (21)

 (obs)
* *=Y Y , (){ } (obs)

* *= Y f a Y . (22)

If

 () ()*max<f b f X (23)

then point x = b can be counted a local boundary minimum
and

 (obs)
* *=X X , { }(obs)

* *= X X b , (24)

 (obs)
* *=Y Y , (){ }(obs)

* *= Y Y f b . (25)

At the end of the routine, algorithm #2 returns sets *X and *Y .
The flowsheet of algorithm #2 is as follows:

1. Input a , b , ()f x , ε , N .

2. Break interval [];a b into subintervals (11) by (12) and
(13).

Electrical, Control and Communication Engineering

__2022, vol. 18, no. 1

32

3. For 1,=i N do:
3.1. Apply algorithm #1 to subinterval [];i ia b .
3.2. If * ≠ ∅M then check:

If (14) holds then delete *x ;
Else store *x and ()*f x as a local

minimum on subinterval [];i ia b .
Else

Apply algorithm #1 to both halves (15).
If * ≠ ∅M for (16) then check:

If (17) holds then
delete (left)

*x ;

Else store (left)
*x and

()(left)
*f x as a local

minimum on
subinterval (16).

If * ≠ ∅M for (18) then
check:

If (19) holds then
delete (right)

*x ;

Else store (right)
*x and

()(right)
*f x as a local

minimum on
subinterval (18).

4. Aggregate all the local minima found on subintervals (11)
into a set *X .

5. Sort them in ascending order.
6. Create a set ()* *=Y f X .
7. If (20) holds then fulfil (21) and (22).
8. If (23) holds then fulfil (24) and (25).
9. Return sets *X and *Y .

VI. COVERING A RANGE OF SUBINTERVAL SETS
Algorithm #2, if number N is sufficiently great, returns all the

local minima of a function including its local boundary minima,
if any, satisfying inequalities (20), (23). But how to guess the
sufficiently great number of subintervals? Inputting always
very great numbers of subintervals into algorithm #2 will
significantly slow down finding minima. Inputting a fewer
number of subintervals may lead to losing some minima.
Therefore, it is reasonable to try a set of these numbers to see
whether new minima appear as number N is increased.

There are six inputs to algorithm #3 (which will incorporate
algorithm #2): the interval endpoints a, b, a formula for
evaluating function f(x) at any point x, tolerance ε, the minimal
number of subintervals minN , the maximal number of
subintervals maxN . At the first step of algorithm #3,
algorithm #2 is applied by min=N N . While * =∅M and

max<N N , the number of subintervals is increased by 1 and
algorithm #2 is applied again. If * =∅M at max=N N , then

 () (){ }* min ,=y f a f b (26)

and

 * =x a by ()* =y f a (27)

and

 * =x b by ()* =y f b , (28)

whereupon algorithm #3 stops returning just a pair { }* *,x y .
Otherwise, if a nonempty set *X is found at some 1=N N
(i. e., * ≠ ∅M at 1=N N), a counter of the number of
subintervals is set at 1: j = 1. Besides, the found sets *X and *Y
are stored indicating the counter:

 (1)
* *=X X , (1)

* *=Y Y . (29)

Then, at the second step of algorithm #3, the number of
subintervals is increased by 1 (while max<N N) and counter j
is increased by 1, whereupon algorithm #2 is applied by this
new number of subintervals jN and

 ()
* *=jX X , ()

* *=jY Y . (30)

If

 () (1)
* *

−=j jX X (31)

by

 { }(1) (1,)
* * 1

− −

=
=

Hj j h

h
X x (32)

and

 { }() (,)
* * 1=

=
Hj j h

h
X x , (33)

then it is checked whether those H values in sets (32) and (33)
are sufficiently close (or, being accurate to ε, are practically the
same). Thus, if

 (,) (1,)
* *1,

max −

=
− < εj h j h

h H
x x (34)

then algorithm #2 is applied by the number of subintervals 2 jN
returning a set *X denoted by *Z . If

 ()
* *= jZ X (35)

by

 { }()
* * 1=
=

Hh

h
Z z , (36)

then it is checked whether those H values in sets (35) and (36)
are sufficiently close. Thus, if

Electrical, Control and Communication Engineering

__2022, vol. 18, no. 1

33

 () (,)
* *1,

max
=

− < εh j h

h H
z x (37)

then algorithm #3 stops returning

{ }(1) (1,)
* * * 1

− −

=
= =

Hj j h

h
X X x ,

 { } (){ }(1) (1,) (1,)
* * * *1 1

− − −

= =
= = =

HHj j h j h

h h
Y Y y f x . (38)

In fact, algorithm #3 covering a range of algorithm #2 runs is
a three-point iterated interval half-cutting. It is worth noting that
algorithm #3 does not return the specific answer. The specific
answer is an internal object of algorithm #1 serving to divide a
subinterval further. The flowsheet of algorithm #3 is as follows:

1. Input a , b , ()f x , ε , minN , maxN .
2. Assign min 1= −N N .
3. While * =∅M and max<N N do:

3.1. Increase N by 1.
3.2. Apply algorithm #2.

4. If * =∅M then do:
4.1. Assign (26) — (28).
4.2. Return { }* * *,=M x y .

5. Assign 1=j .
6. Assign (29).
7. For 1 max1,= +N N N do:

7.1. Increase j by 1.
7.2. Apply algorithm #2.
7.3. Assign (30).

If (31) holds by (32) and (33) then check:
If (34) holds then apply algorithm #2 by
the number of subintervals 2 jN ;

Denote *X by *X .
If (35) holds by (36) then check:

If (37) holds then:
Decrease N by 1.
Assign * =N N .
Return N and (38).

8. If variable *N does not exist, return null.

If the task is to find the global minimum, then it is fulfilled

as a trivial appendix to the three-point iterated interval half-
cutting. As sets (38) are obtained, the global minimum function
value

 (1,)
** *1,

min −

=
= j h

h H
y y (39)

is calculated and every global minimum point

 { }(1,)
** * 1

−

=
∈

Hj h

h
x x (40)

at which

 ()** **=y f x (41)

is extracted. If the global minimum is to be found purely on
open interval (a; b), then the global minimum function value

 () (){ }{ }(1)
** *min \ ,−= jy Y f a f b (42)

is calculated and global minimum point (40) at which (41) holds
is extracted.

To find approximate values of all minimum points and
respective minimum function values, the property of the
function differentiability is unnecessary. It is sufficient that the
function (regardless of whether it is unknown or known) be
bounded and have a finite number of local minimum points.

Theorem 1. If a bounded function ()f x has a finite number

of local minimum points on interval [a; b], then *∃ N such that
algorithm #2 returns this number of approximate local
minimum points which differ from the true local minimum
points at most by ε.

Proof. If the number of minima is finite, then interval [a; b]
can be broken by algorithm #2 into *N equal-length
subintervals such that each of the subintervals either will
contain a single minimum point without local maxima points or
will not contain local minimum points at all. Then, in the first
case, one of the conditions by (4), (6), (8) turns true on every
step of algorithm #1 giving eventually an approximate local
minimum point that differs from the true local minimum point
at most by ε. In the second case, when no local minimum points
are within the subinterval, one of the conditions by (4), (6), (10)
turns true on every step of algorithm #1 that eventually deletes
every candidate to be a local minimum point by using (17) or
(19). The theorem has been proved.

VII. EXAMPLES
To compare performance of three-point iterated interval half-

cutting to that of the golden-section search, ternary search,
genetic algorithm, specific instances are taken that have
multiple extrema [2], [3], [8]. The respective experiments
confirm that the suggested method outperforms those and other
approaches. An example of applying the three-point iterated
interval half-cutting is shown in Fig. 6, where a toy function

 () () () ()0.96sin 0.322sin 13.24 cos 3.36 −= xf x x x e (43)

is used to model the problem of minimization on interval
[−2.15; 1.1]. The 12 local minima (including the global
minimum) are found by N = 9, i. e. by breaking the initial
interval just into 9 subintervals. Another, seemingly a more
difficult example, is presented in Fig. 7 for a toy function

 () () () () ()0.05sin 4 0.08 cos sin 0.5cos cos 2
7

− π = − 
 

x x x xf x x x e e (44)

Electrical, Control and Communication Engineering

__2022, vol. 18, no. 1

34

minimized on interval [−18.8; 4], where the function (surely,
unbeknown to a researcher in reality) has a sort of modulation.
The 48 local minima (including the global minimum) are found
here by N = 77 (by breaking the initial interval into 77
subintervals). Fig. 8 shows the result of applying the three-point
iterated interval half-cutting to find all the local minima of a toy
function

() () () ()0.25sin3cos sin 20 cos 8
7

− π = − − 
 

xf x x x e

 () () ()1.2sin 222sin sin 5 cos 6
6

− π − + 
 

xx x e (45)

on interval [3; 3.6]. Compared to the example in Fig. 7 with
function (44), the example in Fig. 8 with function (45) can be
thought of as a more computationally expensive: the algorithm
takes here 116 subintervals (by 50.65 % greater than that in
Fig. 7) to find all the 41 local minima (by 14.58 % less than that
in Fig. 7).

Fig. 6. The 12 local minima, including both the local boundary minima and the global minimum (marked by the dotted line downward) of function (43) on interval
[−2.15; 1.1].

Fig. 7. The 48 local minima, including only the local right boundary minima and the global minimum (marked by the dotted line downward) of function (44) on
interval [−18.8; 4].

-2.15 -2 -1.75 -1.5 -1.25 -1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1 1.1
-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

-18.8 -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4
-2.3
-2.2
-2.1

-2
-1.9
-1.8
-1.7
-1.6
-1.5
-1.4
-1.3
-1.2
-1.1

-1
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2

Electrical, Control and Communication Engineering

__2022, vol. 18, no. 1

35

Fig. 8. The 41 local minima, including both the local boundary minima and the global minimum (marked by the dotted line downward) of function (45) on interval
[3; 3.6].

VIII. DISCUSSION
The presented approach is applicable to whichever task of

finding local extrema is. It is clear that if primarily the purpose
is to find all local maxima or the global maximum of the
function, the presented approach is applied to function −f(x).

If the function is unimodal, the three-point iterated interval
half-cutting is slower than the golden-section search. The
slowdown is relatively significant if to measure the
computational time for a long series of the minimization
problems. Nevertheless, the function unimodality is a rare
occasion in real-world practice. There are a few local extrema
at least. Even if not all local minima (or maxima) are to be
found, the golden-section search may fail to “hit” the global
minimum (or maximum), whereas the three-point iterated
interval half-cutting completes the task.

Without knowing additional information about the function,
unfortunately, there cannot be assurance of that every local
minimum will be included into the output set *X . Doubling the
number of subintervals to see whether the same minima remain,

when (35) and (37) are expected to be true, may fail in a case if
the function (strictly speaking, the data) is overly fluctuating
(something similar to Figs. 7 and 8). Then set *X lacks some
minima. If a researcher deals with presumably highly
fluctuating functions (data), the part in algorithm #3 can be
slightly modified: if (34) holds then algorithm #2 can be applied
by the number of subintervals mNj, where m > 2. Reversely,
studying rare-fluctuating functions (data) may be more efficient
if, for instance, m = 1.5 or about that.

The presented approach is a significant and important
contribution to the field of numerical estimation and
approximate analysis. In real-world contemporary practice, it
must serve as a computationally efficient tool for fine-tuning
neural networks, adjusting parameters of complex systems (like
radars, radio telescopes, massive engines, big-scaled
constructions, etc.), and optimal parametrization at all.

3 3.02 3.04 3.06 3.08 3.1 3.12 3.14 3.16 3.18 3.2 3.22 3.24 3.26 3.28 3.3 3.32 3.34 3.36 3.38 3.4 3.42 3.44 3.46 3.48 3.5 3.52 3.54 3.56 3.58 3.6
-2

-1.9
-1.8
-1.7
-1.6
-1.5
-1.4
-1.3
-1.2
-1.1

-1
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2

Electrical, Control and Communication Engineering

__2022, vol. 18, no. 1

36

IX. CONCLUSION
The suggested method of three-point iterated interval half-

cutting is an approach to finding all local extrema of an
unknown single-variable function bounded on a given interval
regardless of the interval length. The three of six inputs of the
method routine are straightforwardly defined, whereas the
tolerance with the minimal and maximal numbers of
subintervals are adjustable. These subinterval numbers are
primary adjustable inputs. Although the method does not assure
obtaining all local minima (or maxima) for any function, setting
appropriate minimal and maximal numbers of subintervals
makes missing some minima (or maxima) very unlikely. The
tolerance is the secondary adjustable input. If the minimal and
maximal numbers of subintervals are selected too small, setting
whichever small tolerance cannot help in finding every local
extremum.

The endpoints of the initial interval and a formula for
evaluating the single-variable function at any point of this
interval are inputted along with the three adjustable inputs.
Having broken the initial interval into a set of subintervals, the
three-point iterated interval half-cutting “gropes” around every
local minimum by successively cutting off a half of the
subinterval or dividing the subinterval in two. A range of
subinterval sets defined by the minimal and maximal numbers
of subintervals is covered by running the three-point interval
half-cutting on every set of subintervals. As a set of values of
currently found local minima points changes no more than by
the tolerance, the set of local minimum points and the respective
set of minimum values of the function are returned.

REFERENCES
[1] M. L. Lial, R. N. Greenwell, and N. P. Ritchey, Calculus with

Applications (11th edition). Pearson, 2016.
[2] I. Zelinka, V. Snášel, A. Abraham, Eds. Handbook of Optimization. From

Classical to Modern Approach. Springer-Verlag Berlin Heidelberg, 2013.
https://doi.org/10.1007/978-3-642-30504-7

[3] S. A. Vavasis, “Complexity issues in global optimization: A survey,” in
Handbook of Global Optimization. Nonconvex Optimization and Its
Applications, vol. 2, R. Horst and P. M. Pardalos, Eds. Springer, Boston,
MA, 1995, pp. 27–41.
https://doi.org/10.1007/978-1-4615-2025-2_2

[4] J. Stewart, Calculus: Early Transcendentals (6th edition). Brooks/Cole,
2008.

[5] E. Hewitt and K. R. Stromberg, Real and Abstract Analysis. Springer,
1965. https://doi.org/10.1007/978-3-642-88044-5

[6] K. R. Stromberg, Introduction to Classical Real Analysis. Wadsworth,
1981.

[7] L. D. Hoffmann, G. L. Bradley, and K. H. Rosen, Applied Calculus for
Business, Economics, and the Social and Life Sciences. McGraw-Hill
Higher Education, 2005.

[8] R. Fletcher, Practical Methods of Optimization (2nd edition). J. Wiley and
Sons, Chichester, 1987.

[9] V. V. Romanuke, “Appropriate number and allocation of ReLUs in
convolutional neural networks,” Research Bulletin of NTUU “Kyiv
Polytechnic Institute”, no. 1, pp. 69–78, Mar. 2017.
https://doi.org/10.20535/1810-0546.2017.1.88156

[10] V. V. Romanuke, “Appropriateness of DropOut layers and allocation of
their 0.5 rates across convolutional neural networks for CIFAR-10,
EEACL26, and NORB datasets,” Applied Computer Systems, vol. 22, no.
1, pp. 54–63, Dec. 2017.
https://doi.org/10.1515/acss-2017-0018

[11] V. V. Romanuke, “Wind farm energy and costs optimization algorithm
under uncertain parameters of wind speed distribution,” Studies in
Informatics and Control, vol. 27, no. 2, pp. 155–164, 2018.
https://doi.org/10.24846/v27i2y201803

[12] V. V. Romanuke, “Time series smoothing and downsampling for
improving forecasting accuracy,” Applied Computer Systems, vol. 26, no.
1, pp. 60–70, May 2021.
https://doi.org/10.2478/acss-2021-0008

[13] V. V. Romanuke, “Multiple direction interference suppression by uniform
linear phased array sidelobe efficient canceller,” Information and
Telecommunication Sciences, vol. 12, no. 1, pp. 33–40, Jun. 2021.
https://doi.org/10.20535/2411-2976.12021.33-40

[14] P. von Butovitsch (ed.), Advanced Antenna Systems for 5G Network
Deployments: Bridging the Gap Between Theory and Practice.
Cambridge, Massachusetts, USA, Academic Press, 2020.
https://doi.org/10.1016/C2018-0-05274-3

[15] J. Kiefer, “Sequential minimax search for a maximum,” Proceedings of
the American Mathematical Society, vol. 4, no. 3, pp. 502–506, 1953.
https://doi.org/10.2307/2032161

[16] M. Avriel and D. J. Wilde, “Optimality proof for the symmetric Fibonacci
search technique,” Fibonacci Quarterly, no. 4, pp. 265–269, 1966.

[17] W. H. Press, “Minimization or maximization of functions,” in Numerical
Recipes: The Art of Scientific Computing (3rd edition), W. H. Press, S. A.
Teukolsky, W. T. Vetterling, B. P. Flannery, Eds. Cambridge University
Press, New York, 2007, pp. 487–562.

[18] A. Kheldoun, R. Bradai, R. Boukenoui, and A. Mellit, “A new Golden
Section method-based maximum power point tracking algorithm for
photovoltaic systems,” Energy Conversion and Management, no. 111, pp.
125–136, Mar. 2016.
https://doi.org/10.1016/j.enconman.2015.12.039

[19] K. J. Overholt, “Efficiency of the Fibonacci search method,” BIT
Numerical Mathematics, vol. 13, no. 1, pp. 92–96, Mar. 1973.
https://doi.org/10.1007/BF01933527

[20] J.-D. Lee, C.-H. Chen, J.-Y. Lee, L.-M. Chien, and Y.-Y. Sun, “The
Fibonacci search for cornerpoint detection of two-dimensional images,”
Mathematical and Computer Modelling: An International Journal,
vol. 16, no. 11, pp. 15–20, Nov. 1992.
https://doi.org/10.1016/0895-7177(92)90102-Q

[21] S. Edelkamp and S. Schrödl, “Chapter 7 – Symbolic search,” in Heuristic
Search, S. Edelkamp, S. Schrödl, Eds. Morgan Kaufmann, 2012, pp. 283–
318.
https://doi.org/10.1016/B978-0-12-372512-7.00007-9

[22] Ş. E. Amrahov, A. S. Mohammed, and F. V. Çelebi, “New and improved
search algorithms and precise analysis of their average-case complexity,”
Future Generation Computer Systems, vol. 95, pp. 743–753, Jun. 2019.
https://doi.org/10.1016/j.future.2019.01.043

[23] L. D. Chambers, Ed. The Practical Handbook of Genetic Algorithms:
Applications (2nd edition). Chapman and Hall/CRC, 2000.
https://doi.org/10.1201/9781420035568

[24] D. E. Goldberg, Genetic Algorithms in Search, Optimization & Machine
Learning. Addison-Wesley, 1989.

Vadim V. Romanuke was born in 1979. He graduated from the Technological
University of Podillya in 2001. Higher education was obtained in 2001. In 2006,
he received the Degree of Candidate of Technical Sciences in Mathematical
Modelling and Computational Methods. The degree of Doctor of Technical
Sciences in Mathematical Modelling and Computational Methods was received
in 2014. In 2016, Vadim Romanuke received the academic status of Full
Professor. His current research interests concern wireless communication
systems, job scheduling, semantic image segmentation, decision making, game
theory, statistical approximation, and control engineering based on statistical
correspondence.
Address for correspondence: Soborna str., 87, Vinnytsia, Ukraine, 21050.
E-mail: romanukevadimv@gmail.com
ORCID iD: https://orcid.org/0000-0001-9638-9572

