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Abstract – For the past decade, the main problem that has 
attracted researchers’ attention in aerial robotics is the position 
estimation or Simultaneous Localization and Mapping (SLAM) of 
Unmanned Aerial Vehicles (UAVs) where the GPS signal is poor 
or denied. This article reviews the strengths and weaknesses of 
existing methods in the field of aerial robotics. There are many 
different techniques and algorithms that are used to overcome the 
localization and mapping problem of these UAVs. These 
techniques and algorithms use different sensors, such as Red 
Green Blue-Depth (RGB_D), Light Detecting and Ranging 
(LIDAR), and Ultra-wideband (UWB). The most common 
technique is used, i.e., probability-based SLAM, which uses two 
algorithms: Linear Kalman Filter (LKF) and Extended Kalman 
Filter (EKF). LKF consists of five phases and this algorithm is just 
used for linear system problems. However, the EKF algorithm is 
used for non-linear systems. Aerial robots are used to perform 
many tasks, such as rescue, transportation, search, control, 
monitoring, and different military operations because of their vast 
top view. These properties are increasing their demand as 
compared to human service. In this paper, different techniques for 
the localization of aerial vehicles are discussed in terms of 
advantages and disadvantages, practicality and efficiency. This 
paper enables future researchers to find the suitable SLAM 
solution based on their problems; either the researcher is dealing 
with a linear problem or a non-linear problem. 

 
Keywords – EKF, extended Kalman filter, light detecting and 

range, linear Kalman filter, simultaneously localization and 
mapping, SLAM, unmanned aerial vehicle. 

I. INTRODUCTION 
Today, Artificial Intelligence is developing rapidly in the 

field of aerial robotics. Aerial robotics is used to perform many 
tasks, such as rescue, remote sensing, disaster response, 
surveillance, transportation, search, control, monitoring, and 
different military operations where the performance of humans 
is impossible because of their vast top view and reachability 
anywhere. However, there is a problem of aerial vehicles which 
grasp the attention of researchers and technologists in the 
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position estimation and mapping of aerial vehicles. This 
problem is mostly called the Simultaneous Localization and 
Mapping (SLAM) problem. Unmanned Aerial Vehicles 
(UAVs) should have such a design that works freely in an 
unknown environment without using previous information 
about the environment. UAVs should be capable of estimating 
the position and exploring such areas where normal estimation 
of the position of things is too difficult and reachability of 
humans is not possible [1]–[10]. There are various methods and 
algorithms used to solve these problems of UAV robots, such 
as low-energy sensors and radio frequency circuitry, Ultra-
wideband (UWB) based algorithms, Red Green Blue-Depth 
(RGB_D) sensors, and Linear Kalman Filter (LKF) and 
Extended Kalman Filter (EKF) both with SLAM. Low-energy 
sensors and radio frequency circuitry attract researchers’ 
attention due to availability; this technology uses signals 
received by the sensors to estimate the position of sensors. Due 
to its low accuracy in getting information, this technique is not 
useful. The UWB technique is suitable for short-distance 
mapping and localization in indoor systems and it is possible to 
obtain correct data within a few centimetres [11], [12]. The 
Linear Kalman filter algorithm consists of five phases and is 
used for linear system problems. The EKF algorithm, in turn, is 
used for the non-linear system. Fig. 1 shows that landmark-
based localization methods are divided into two categories: 
1. Relative Localization; 2. Absolute Localization. 

Relative localization methodology uses inner sensors, which 
are odometry and inertial unit of measurement to measure every 
occurring change in the environment. However, the calculation 
of error triggered by Wheel Slippage on pulverized vehicles 
becomes large for long time operations [13]–[16]. On the other 
hand, absolute localization methodology uses outer sensors for 
the estimation of the position of the UAV after every little drive 
of the robot, and the calculation error becomes least or zero 
[17]–[22]. 
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Fig. 1. Classification of land-mark localization. 

 The combination of both relative and absolute localization 
methods is used widely to minimise the localization error by 
using Kalman filters (Linear & extended Kalman filters) [23]–
[25]. UAV robots have integrated odometry sensors that need 
sport by using other techniques or approaches such as GPS. 
However, GPS fails indoor due to its limitation and it can easily 
be lost by weather conditions or, in other words, it depends on 
weather conditions [26]–[28]. 

II. LITERATURE REVIEW 

A. Ultra-wideband Based Algorithm Approach 
UWB sensor-based algorithm consists of two main steps. 

Firstly, the position estimation data are obtained by UWB 
sensors and after that the 3D conservation map is refined with 
position estimation data. In step 2, optimization of estimated 
position of UAV and UWB sensors is done. 

Step 1: RO Map & Localization 
The main aim of this step is to gather the data about the 

position of UWB sensors and then use the data to compute the 
3D Map of aerial vehicles. This step is called RO-SLAM. 
Different algorithms are used for RO-SLAM based on two 
things, i.e., timing filtering and probabilistic framework. Fat-
SLAM is a method that presents better outcomes than others 
based on EKF and UKF algorithms [29]. It does not protect the 
relationship between milestones of the guide in those 
applications where it may exist on the map. Nevertheless, it has 
a drawback that it significantly reduces the optimization of the 
estimated UAV position. To overcome this problem, a group of 
methods is proposed to estimate the position of UAV robots 
using singular value deterioration (SVD) [30]. However, these 
approaches assume the estimated measurements of all sensors 
at all robot positions [31]. 

Problem Definition 
A robot trajectory is denoted by N number of poses as 

X = {x1, x2, x3,…xN} and the position of UWB is represented by 
B = {bj} where j = 1, 2, 3,….M. Each UAV robot pose is 
denoted by 𝑥𝑥1, = [𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖,, 𝑧𝑧𝑖𝑖,ᴪ𝑖𝑖]b and every position of UWB 
sensor is denoted by bj = [bxj,byj,bzj]t. These observations are 
combined to compute dij = [xi.bj] that is called Euclidean 
distance. The main aim of RO-SLAM is to compute the X and 
B flight of the robot and the position of UWB sensors, 

respectively. The result of X and B can be computed by the 
following expression (1):  
arg𝑚𝑚𝑚𝑚𝑚𝑚
{𝑋𝑋,𝐵𝐵} [∑ .∑ 𝐶𝐶𝑖𝑖𝑖𝑖(��𝑥𝑥𝑖𝑖 − 𝑏𝑏𝑖𝑖�� − 𝑑𝑑𝑖𝑖𝑖𝑖)2𝑀𝑀

𝑖𝑖=1
𝑁𝑁
𝑖𝑖=1 ].                          (1) 

There, cij is a variable which equals 1 if measurement takes 
from robot pose to sensor positions and otherwise it is equal to 
0. The restrictions can be overwhelmed by adding the 
odometrical term into (1). Thus, (1) becomes: 
arg𝑚𝑚𝑚𝑚𝑚𝑚
{𝑋𝑋,𝐵𝐵} [∑ (𝐸𝐸(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖−1) + ∑ 𝐶𝐶𝑖𝑖𝑖𝑖(��𝑥𝑥𝑖𝑖 − 𝑏𝑏𝑖𝑖�� − 𝑑𝑑𝑖𝑖𝑖𝑖)2𝑀𝑀

𝑖𝑖=1
𝑁𝑁
𝑖𝑖=1 )] (2) 

In (2) 𝐸𝐸(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖−1) is a squared error among xi and xi–1 states. 

Optimization 
If the data set about robots are already known, then the result 

can be obtained straightforwardly from (2) by simply adding 
values. If the data are unknown, then the value of B (positions 
of sensors) is initialized randomly and the process chooses the 
right one.  

 

Fig. 2. Orthogonal view of multiple hypothesis of robot and three UWB 
positions.  

Instead, the parameter of the UWB sensor pose is recalculated. 
Therefore, many values of the estimate should be taken into the 
optimizer [32]. In this way, when UAVs perform a slight 
movement and obtain position xi gets the first run estimate 
value dij to jth sensor. Hight of the sensor in the circle is 𝑑𝑑𝑧𝑧𝑖𝑖 . 
This process creates several hypotheses by sampling the circle 
and allowing the optimizer to choose a value that is better 
among all. 

Let us assume that hypotheses are denoted by H and for jth 
sensors, it will be Hj, then the UWB sensor parameter will 
become   

                bj = [bj1, bj2, bj3,….., bjHj]                 (3-a) 

and for each sensor position hypotheses will be: 
               bjk = [bxjk, byjk, bzj]t.      (3-b) 

The parameter bzj stays the same because it is known. Let us 
recall (2) and reparametrize it: 

     arg𝑚𝑚𝑚𝑚𝑚𝑚
{𝑋𝑋,𝐵𝐵} [∑ (𝐸𝐸(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖−1) + ∑ 1

𝐻𝐻𝑗𝑗
𝑀𝑀
𝑖𝑖=1 ∑ 𝐶𝐶𝑖𝑖𝑖𝑖(��𝑥𝑥𝑖𝑖 −

𝐻𝐻𝑗𝑗
𝑘𝑘=1

𝑁𝑁
𝑖𝑖=1

𝑏𝑏𝑖𝑖𝑘𝑘�� − 𝑑𝑑𝑖𝑖𝑖𝑖)2).                                                             (4) 

Initialization 
Now the values of UAV robot pose xi and the position of 

sensors bj will be initialized by odometry values and 
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hypotheses, respectively. Thus, it gets the value of dij from 
UWB sensors for the first time then we use the current position 
of the UAV robot by the following equations: 

bxjk = xi + dijcos(2π(k−1)/Hj);               (5) 

byjk = yi + dijsin(2π(k−1)/Hj);                (6) 

bzjk  = bzj.                                             (7) 

Step2: Calculation of Map and Position 
The result obtained in the first step includes the data about 

the robot and UWB estimated position. If the motion of a robot 
is much stronger, it lets the optimizer remove uncertainty from 
trajectory and position [33]. Thus, it will assemble the single 
solution and all hypotheses find at the same position, having 
good gauss data about UWB sensors and path of the movement 
of robot, then it can use automatically loop closing method for 
those techniques which are based on RGB-D, such as VPR or 
SM. In this paper, the SM process is executed for all poses of 
robots. In a close loop, the data of sensor point-cloud pci for xi 
pose and pcj for xj pose are given, then matching process creates 
the transformation which aligns both points in a better way. 
Usually, this type of transformation is used as a constraint 
between the information matrix associated with the pose and 
poses of the robot, which converts the importance of constraints 
into a non-linear optimization approach [34]. In this entire 
process of transformation, all point clouds are transformed into 
a global frame of reference according to connected pose 𝑝𝑝𝑐𝑐𝑖𝑖

𝑔𝑔 
and error among these cloud points is calculated. Thus, (2) 
becomes: 

arg𝑚𝑚𝑚𝑚𝑚𝑚
{𝑋𝑋,𝐵𝐵} [∑ �𝐸𝐸(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖−1) + ∑ 𝐷𝐷(𝑝𝑝𝑖𝑖

𝑙𝑙=1 𝑝𝑝𝑐𝑐𝑖𝑖
𝑔𝑔 , 𝑝𝑝𝑐𝑐𝑙𝑙

𝑔𝑔� +𝑁𝑁
𝑖𝑖=1

∑ 𝐶𝐶𝑖𝑖𝑖𝑖(��𝑥𝑥𝑖𝑖 − 𝑏𝑏𝑖𝑖�� − 𝑑𝑑𝑖𝑖𝑖𝑖)2𝑀𝑀
𝑖𝑖=1 )].                                               (8) 

The calculation of 𝐷𝐷�𝑝𝑝𝑐𝑐𝑚𝑚𝑔𝑔 , 𝑝𝑝𝑐𝑐𝑙𝑙
𝑔𝑔� could have significant cost 

if this calculation involves large cloud points. It is necessary to 
calculate the matching between cloud points at every time; thus, 
this process slows down the optimization. Therefore, the 
assuming value of poses for optimization is not so far away 
from the final estimation in the RO-SLAM step. Hence, 

𝐷𝐷�𝑝𝑝𝑐𝑐𝑚𝑚𝑔𝑔 , 𝑝𝑝𝑐𝑐𝑙𝑙
𝑔𝑔� needs to be recalculated because the association 

is known. 

B. KF and EKF Approach 
Kalman filter (KF) approach uses a linear system that is why 

it is known as linear Kalman filter. Linear Kalman filter consists 
of five phases: 

1) Absolute measurement of motionless robot (AMOML); 
2) Absolute measurement of moving robot (AMOM); 
3) Relative measurement of motionless robot (RMOML); 
4) Relative measurement of moving robot (RMOM); 
5) Relative measurement of moving robot/while the position     

of robot is not detected. 
 

 

 

Fig. 3. Phases of Kalman filter. 

This technique uses linear approximation which is related to 
positions and covariance matrices of error for the determination 
of the estimation of prior condition for the generation of an 
estimate of posterior [35]. The following equation explains the 
dynamic and measurement model system, which is used for the 
estimation purpose [35]. 

YN+1=f (YN, BN, CN) (9) 

DN+1=h (YN, EN) (10) 

YN+1/N=FN×YN/N (11) 

LN+1/N=FN×LN/N×FNT+AN×QN×ANT (12) 

GN+1=LN+1/N×HNT[HN+1×LN+1/N×HN+1T+RN]−1 (13) 

YN+1/N+1=YN+1/N+GN+1[DN+1−HN+1×YN+1/N] (14) 

LN+1/N+1=[I−GN+1×HN+1]×LN+1/N (15) 

TABLE I 
TABLE OF NOTATIONS 

Symbol Name 

YN Present state 

YN−1 Prior state 

QN Covariance estimation matrix  

RN Covariance observation matrix  

YN+1 Predictable state vector 

LN+1/N Covariance matrix  

Q Process matrix of noise 

R Measurement matrix noise 

CN ∼N (0, QN) Noise of process  

EN ∼ N (0. RN) Noise of observation 

Kalman 
filter 

R.M.O.M 
with no 
position 

 

R.M.O.M  
Robot 

R.M.O.ML 
Robot 

A.M.O.M    
Robot 

 

A.M.O.ML      
Robot 
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N+1 Instantaneous time 

DN+1 Predictable measurement vector 

∇Fx, ∇Fu Matrices of Jacobian for function f 

V Velocity 

L Landmark position 

JF State equation of Jacobian 

GN+1 Kalman gain 

YN+1/N+1 Updated estimation 

LN+1/N+1 Updated covariance 

H Measurement Jacobian 

dt Universal time 

T Time 

t Initial value of time 

LN  New covariance matrix 

These seven equations are based on the Kalman filter 
method. Eqs. (9)–(10) are used for conjunction; for the 
generalization of prior state and covariance error of equivalent, 
(11) and (12) are used, respectively. The Kalman gain can be 
obtained by using (13) and state approx. & covariance error by 
(14)–(15). 

It is known that the KF approach is used for a linear system 
but sometimes it can be used for a non-linear system by taking 
the first-order partial derivative, calculation of Hk+1 factor, and 
nonlinear system (Fk matrices linearized). 

2) Extended Kalman Filter Approach 
EKF approach is a technique used for non-linear systems. 
EKF SLAM for UAV robot is executed in identified field 

with a significant value. In this paper, two mathematical models 
are represented: 

The EKF state  
Model of observation that is described by equations: 
YN+1=f [YN, BN, CN];                                                   (16) 
DN+1=h [YN+1, EN+1],                                                  (17) 
where CN, EN+1, YN+1, BN, and DN+1 represent the noise 

that occurs during operation, the noise of observation, 
predictable state vector at time N+1, known input BN 
assumptive all noise to be CN, and the predictable measurement 
vector at the time instant N+1, respectively [36]. 

This approach is divided into two stages: 
initial stage YN+1; 

predication stage LN+1/N. 
 

 

 
Fig. 4. Stages of EKF approach. 

YN+1=f (YN, CN+1) + ∇Fx × (YN − YN/N).                    (18) 

LN+1/N =∇Fx ×LN/N×∇FTx+∇Fu×QN ×∇FTu.                (19) 

∇Fu and ∇Fx are both Jacobean matrices. B and F are the 
state equations written below: 

𝐵𝐵 = �
𝑑𝑑𝑑𝑑 × cos�𝑥𝑥(3)� 0
𝑑𝑑𝑑𝑑 × cos�𝑥𝑥(3)� 0

0 𝑑𝑑𝑑𝑑
�;                                       (20) 

𝐹𝐹 = �
1 0 0
0 1 0
0 0 1

�.                                                       (21) 

The Jacobean state equation will be as follows:                

JF= �
0 0 −dt × u(1) × sin (x(3)) 
0 0   dt × u(1) × cos (x(3))
0 0 0

�.                        (22) 

Initialization of Jacobian G is the following: 

G=�−√𝛿𝛿(1) −√𝛿𝛿(2) 0
𝛿𝛿(2) −𝛿𝛿(1) −1

     √𝛿𝛿(1) √𝛿𝛿(2)
−𝛿𝛿(2) 𝛿𝛿(1)

�.                  (23)                           

Updating an observation phase, the model of observation 
DN+1 at YN+1/N can be represented as follows: 

DN+1=h(YN+1/N)+HN+1×(YN+1/N−YN+1)                   (24) 

For the KF update phase, the KF gain is found using the 
formula: 

GN+1 = LN+1/N×HT N+1×[HN+1×LN+1/N 
×HTN+1+RN]−1;                                                                (25) 

GN+1/N+1=YN+1/N+GN+1×[DN+1−HN+1×YN+1/N].  (26) 

If the value of DN is known, then EKF analyses the matrix 
of Kalman gain to obtain the value of YN and update the error 
matrix of the state. For updating step, the above equations 
become: 

YN = YN + GN × [ DN −h(YN )];                                      (27) 
LN = [I −GN ×HN] ×LN.                                                    (28) 

The updated LN+1/N+1 is denoted as: 
LN+1/N+1= [I −GN+1×HN+1] ×LN+1/N.                         (29) 
 
 
 
 

Initial Stage 
YN+1 

EKF Approach 

Prediction Stage 
YN+1/N 
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III. CRITICAL ANALYSIS 
These all equations are used in both approaches KF & EKF. 

EKF has one disadvantage, i.e., the noise in its measurements 
is not perfectly removed, then the robot will deviate from its 
route, which gives inconsistency in the result. 

In this section, the comparison of all discussed approaches is 
shown in tabular forms. Table II shows the properties and 
limitations of UWB, KF, and EKF techniques. Table III shows 
the sampling time of these techniques. These comparisons show 
the clear advantages of EKF techniques over other existing 
techniques; EKF based approach can deal with non-linear 
models, exhibits good loop closure, and is suitable for long-
distance rather than UWB and KF based approaches, which are 
only capable of dealing with short-distance and linear models, 
respectively. 

TABLE II 
COMPARISON OF SLAM TECHNIQUES BASED ON ADVANTAGES AND 

DISADVANTAGES [37] 

Sr. 
No. Techniques Properties Limitations 

1 UWB 

• It deals only 
with indoor 
problems 

• It is suitable for 
short distance 

• Work well within limited 
range, such as few 
centimetres to a meter only 
(not suitable for long 
distances) 

• It has computational cost too 
high 

2 KF 

• It deals with 
indoor as well as 
outdoor 
problems 

• It is suitable for 
different 
distances 

• Less 
computational 
cost 

• It does not deal with 
nonlinear models 

• It does not deal with 
complex environment 

3 EKF 

• Deals with both 
linear and 
nonlinear models 

• Less 
computational 
cost 

• Loop closure 
efficient 

• Suitable for 
different 
distances 

• It has noise and 
inconsistency problems 
when it deals with a large or 
complex map 

 
TABLE III 

COMPARISON OF SLAM APPROACHES BASED ON SAMPLING [38], [39] 

 
 

IV. CONCLUSION 
In this paper, a comparative study has been carried out 

between different approaches for the localization of UAVs. 
These techniques have their strengths and weaknesses. During 
the study, it has been observed that the UWB approach is 
limited for indoor tasks and a short distance of few centimetres 
to a meter. It gives satisfactory results; however, in a complex 
environment, it does not get proper information about the 
position estimation of the robot. To improve the results, RGB-
D sensors are used. However, these sensors are too costly as 
compared to UWB. KF technique is commonly used for linear 
systems to estimate the position and mapping. It has five 
distinct phases. This technique is limited to linear systems and 
does not work for non-linear systems. 

The EKF approach is used for both linear and nonlinear 
systems. It simply linearizes all nonlinear system models and 
accurately evaluates the UAV robot position. Results show that 
EKF SLAM is better than KF due to accuracy, practicality, and 
efficiency. Although it has a problem when the noise in its 
measurements is not perfectly removed, the robot deviates from 
its route. Future work in the direction of noise reduction 
techniques for unbiased location estimation is recommended.  
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