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Abstract – An approach to optimize centroid-based clustering of 
flat objects is suggested, which is practically important for 
efficiently solving metric facility location problems. In such 
problems, the task is to find the best warehouse locations to 
optimally service a given set of consumers. An example is assigning 
mobiles to base stations of a wireless communication network. We 
suggest a hexagonal-pattern-based approach to partition flat 
nodes into clusters quicker than the k-means algorithm and its 
modifications do. First, a hexagonal cell lattice is applied to nodes 
to approximately determine centroids of the clusters. Then the 
centroids are used as initial centroids to start the k-means 
algorithm. The suggested method is efficient for centroid-based 
clustering of dense nearly-square point clouds of 0.1 million points 
and greater by using no fewer than 6 lattice cells along an axis. 
Compared to k-means, our method is at least 10 % faster and it is 
about 0.01 to 0.07 % more accurate in regular Euclidean distances. 
In squared Euclidean distances, the accuracy gain is 0.14 to 
0.21 %. Applying a hexagonal cell lattice determines an upper 
bound of the clustering quality gap. 

 
Keywords – Centroid-based clustering, hexagonal pattern, 

initialization, square cloud. 

I. CHALLENGE IN CENTROID-BASED CLUSTERING 
Clustering flat objects, among the others, has many practical 

implementations such as image analysis [1], object recognition 
[2], anomaly detection [3], [4], determining structural similarity 
of chemicals (in mathematical chemistry) [5], [6], finding 
weather regimes or preferred sea level pressure atmospheric 
patterns (in climatology) [7], financial analysis and stock price 
comovement [8], geological data analysis [9], etc. Another 
implementation, specifically of centroid-based clustering, 
consists in assigning mobiles to base stations of a wireless 
communication network [10], [11]. In general, clustering flat 
objects is a metric facility location problem, where the task is 
to find the best warehouse locations to optimally service a given 
set of consumers. Warehouses are seen as cluster centres 
(centroids) and the data to be clustered are seen as consumer 
locations [12], [13].  

The centroid-based clustering approach that is the most 
referred to and used is the method of k-means and its 
modifications like k-medoids and k-means++ [14], [15]. In 
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general, the centroid-based clustering problem is to partition N 
observations into k clusters by minimizing the sum of within-
cluster squared Euclidean distances [16]. It is an NP-hard 
optimization problem, so the k-means algorithm was developed 
as an efficient heuristic to converge quickly to a local optimum, 
i. e., an approximate solution of an acceptable inaccuracy. A 
challenge exists when too many points (even two-dimensional 
or, in other words, flat objects) are to be clustered, and, in 
addition, when the number of clusters is increased. Then the 
algorithm slows down significantly. For instance, a set of 
12 500 points scattered uniformly within a unit square is 
partitioned into 64 clusters within 0.32 s on a dual-core 
processor Intel Core i5-7200U@2.50GHz. When the dataset is 
enlarged twice (within the same square), it takes up to 1.7 s (the 
computational time variation exists because it depends on the 
initialization). Doubling the dataset once more, results in the 64 
clusters of 50 000 points are obtained in about 2.7 s (Fig. 1). 

 
Fig. 1. An example of 50 000 flat points partitioned into 64 clusters by using 
the k-means algorithm. The centroids are marked with circles. The points are 
scattered such that the point cloud is nearly square. The inner clusters mostly 
constitute slightly contorted irregular hexagons. The boundary clusters mostly 
are contorted irregular pentagons with the outer sides “torn” in the visualization. 
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According to Fig. 1, one can clearly see that the resulting 
cluster areas closely resemble irregular polygons, which mostly 
are contorted irregular hexagons inside the nearly-square point 
cloud and are contorted irregular pentagons on its boundaries. 
Moreover, the cluster centroids in this particular example are 
located such that they remind vertices of a contorted 8-by-8 
lattice. Nevertheless, there are no clearly distinguishable eight 
rows and eight columns of the polygons embracing the clusters. 

II.  MOTIVATION, AIM, AND TASKS TO BE ACCOMPLISHED 
The centroid-based clustering algorithms do not guarantee 

convergence to the global optimum [14], [15], [17]. The result 
depends on choosing initial centroids of the clusters before 
proceeding with the algorithm iterations [15], [18], [19]. 
Different initializations and subsequent multiple runs of the 
algorithm result in sets of clusters that differ in locations of their 
centroids, cluster size, and eventual sum of within-cluster 
squared Euclidean distances [14], [18]. Owing to this and to the 
fact that the k-means algorithm is usually fast, it is run multiple 
times with different initializations (i. e., the starting set of 
clusters). Thereupon the best result, whose sum is the least, is 
selected as the solution [15], [17], [20], [21]. 

The worst-case convergence, when the running time is 
exponential [22], occurs rarely only for particular certain point 
sets, not like those in Fig. 1 or similar “box-like” point sets. The 
smoothed running time of the k-means algorithm is polynomial 
[14], [23]. Moreover, the algorithm is often considered to be of 
roughly linear complexity in cases, where the data do have a 
clustering structure (or similar to that in Fig. 1). In such cases, 
the number of iterations until convergence is often small, and 
the k-means algorithm just slightly improves the clustering 
result after a few starting iterations [18]–[20]. 

Furthermore, the algorithm tends to determine clusters of 
comparable spatial extent (similarly to the clusters in Fig. 1). It 
spends a lot of processing time computing the distances 
between each of the k centroids and the N data points. Since 
points usually stay in the same clusters after a few iterations, 
much of these operations are useless, making the algorithm very 
inefficient. In particular, the result in Fig. 1 prompts that 
clusters in such dense nearly-square point clouds tend to have a 
form of an irregular polygon, mostly being hexagon. It is natural 
to expect that assigning points to clusters whose borders are 
defined by hexagons would not worsen much the quality of 
clustering. Therefore, the aim is to develop a method that could 
speed up clustering dense nearly-square point clouds by using a 
hexagonal pattern. To achieve the aim, the following six 
standard tasks are to be accomplished: 

1. To suggest a hexagonal-pattern-based approach to 
partition flat points into clusters quicker than the k-means 
algorithm and its modifications do.  

2. To suggest a method of measuring the quality of clustering 
by the suggested approach, including both the accuracy and 
computational time. The quality of clustering should be 
inherited by its efficiency.  

3. To organise a simulation set-up for gathering statistics of 
clustering nearly-square point clouds by using the k-means and 

k-medoids algorithms along with the suggested clustering 
approach.  

4. Based on the simulation results, to ascertain whether the 
suggested approach is efficient. If it is efficient, determine 
limits within which this efficiency is maintained. 

5. Whichever the efficiency is, to discuss applicability and 
significance of the suggested approach. 

6. To conclude on the contribution and a possibility of further 
research. 

III. HEXAGONAL PATTERN 

Let us denote by [ ]{ } 1

N
i i i i

P x y
=

= =P  a set of N two-
dimensional points (objects), where xi and yi are the horizontal 
and vertical components, respectively. Given an initial set of k 
centroids ( ){ }(1) (1)

1
1

k

j j j j
a b

=
 =  C  of the clusters, the k-means 

algorithm proceeds by alternating between the assignment and 
update steps [16], [20], [22], [24]. At assignment step s, cluster 
j is a set 

 

  by 1, 2,s = K , (1) 

where each point is assigned to exactly one cluster. At the 
update step, which follows (1), the centroids are recalculated as 

( ) ( 1) ( 1)1 s s
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In k-means, the cluster centroid is not necessarily one of the 
points of the given set [ ]{ } 1

N
i i i

P x y
=

= , but it is just the 
average (mean) of the points in the cluster. In contrast to the k-
means algorithm, k-medoids takes ( )j s P∈C  at every step s 
(i. e., it chooses actual data points as centroids referred to as 
medoids), and thereby allows for greater interpretability of the 
cluster centroids than in k-means. 

A hexagonal cell lattice of size M×M is created by enclosing 
nodes (1) within rectangle 
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The area within rectangle (3) is uniformly broken into M 2 
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 for hor 1,m M=  and vert 1,m M=  (5) 

coordinates at hexagonal location [ ]hor vertm m , where 
function ( )xψ  returns the integer part of number x. A convex 
hull over vertices  

( ) ( ){ }6(hor) (vert )
hor vert hor vert 1

, , ,i i i
h m m h m m

=
 

in  is a hexagon ( )hor vert,X m m  that can be obtained by 
stretching (either horizontally or vertically) the respective 
regular hexagon [25]. This hexagon encloses nodes belonging 
to the respective cluster created as a set 

( )hor vert,H m m =  
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 for hor 1,m M=  and vert 1,m M= . (6) 

Running operations of checking the membership in (6) is far 
faster than running iterations by (1) and (2) [26], [27]. Thus, 
this hexagonal-pattern-based approach partitions flat points into 
clusters quicker than the k-means algorithm and its 
modifications do. 

Obviously, centroids of the clusters created by (3)–(6) are 
points 
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that are not necessarily the vertices 

( ) ( ) ( )[ ]hex hor vert hex hor vert hex hor vert, , ,m m u m m w m m= =V  

 

 for hor 1,m M=  and vert 1,m M=  (8) 

of the hexagonal cell M×M lattice (that can be obtained by 
stretching, either horizontally or vertically, the respective M×M 
lattice of regular hexagons). Similarly to k-means, cluster 
centroid (7) is not necessarily one of the points of the given set 

[ ]{ } 1

N
i i i

P x y
=

= . However, unlike k-means and k-medoids, the 
centroids do not matter while a set of points is clustered by the 
hexagonal pattern by (3)–(6).  

An example of applying the hexagonal pattern by (3)–(6) to 
nodes from Fig. 1 is shown in Fig. 2. The 64 clusters of 50 000 
points are obtained in about 0.09 s that is 30 times faster than 
the result in Fig. 1 produced by k-means. It is clear that the 
protruding clusters on the left and right can be 50 % filled at 
most. The non-filled area of the bottom and upper boundary 
clusters is, for a unit regular hexagon (whose side length is 
equal to a unit), equal to 3 4  units. The area of a unit regular 
hexagon is 

3 33 4 1 3 3 4
2

+ ⋅ + =  units. 

Therefore, such clusters can be filled at most by 5/6 of the 
hexagon area. 

 
Fig. 2. An example of applying the hexagonal pattern by (3)–(6) to nodes from 
Fig. 1 for creating 64 clusters. The hexagonal cell 8×8 lattice is also shown. The 
four protruding clusters on the left and four ones on the right are nearly half-
filled. The bottom and upper boundary clusters are nearly 83.33 % filled as well. 
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Despite the centroid-based clustering by the hexagonal 
pattern is very fast, it is less accurate. In the example in Fig. 2, 
the sum of within-cluster squared Euclidean distances, with 
respect to hexagonal centroids (7), is 1.0509 times greater than 
that in Fig. 1. Nevertheless, the quality of clustering must not 
be considered only by the accuracy. 

IV. QUALITY OF CLUSTERING 
At step s of k-means (k-medoids), the abovementioned  

sum of within-cluster squared Euclidean distances is calculated 
as 

 ( ) ( ) ( )
( )

2 2( ) ( )

1 i j
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i j i j
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= ∈
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In the centroid-based clustering algorithms, sum (9) is 
theoretically minimized. In practice, the algorithm is kept 
running while  

  for some 0ε >  (10) 

at least for cluster m and the maximal number of iterations is 
not exceeded. Along with (9), the regular Euclidean distances 
can be used to estimate the accuracy: 
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The accuracy of the hexagonal-pattern-based clustering is 
measured similarly to (9) and (11): 
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The quality of clustering also depends on how fast it is. 
Obviously, the hexagonal-pattern-based clustering is fast 
enough compared to both k-means and k-medoids. Then, if 
value (12) was tolerably greater than value (9), the hexagonal 
approach would be efficient.  

V.  SIMULATION SET-UP 
To see how efficient the suggested clustering approach is, let 

the number of data points be 

 { }5 5 61000, 5000, 25000,10 , 5 10 ,10N ∈ ⋅  (14) 

and define the number of lattice cells by 

 { }2, 10M ∈ . (15) 

To generate nearly-square point clouds, every point 

 [ ] [ ]i i i ix y = ξ ζ  for 1,i N=  (16) 

where ξi and ζi are values of two independent random variables 
distributed uniformly on the open interval (0;1). 

Let us denote by *
hexD  and *

hexR  the approximate minima of 
sums (12) and (13), respectively. Similarly, let us denote by 

*
meansD  and *

meansR  the approximate minima of sums (9) and (11) 
calculated for clusters partitioned by k-means. When k-medoids 
is used, these are denoted by *

medoidsD  and *
medoidsR . In addition 

to the three approaches to clustering, the fourth one can be 
based on a specific initialization of the k-means algorithm. In 
this case,  
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i. e. centroids (7) of the clusters created by the hexagonal 
pattern are used as an initial set of k centroids  
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of the clusters. Let us denote by *
hex-meansD  and *

hex-meansR  the 
approximate minima of sums (9) and (11) for this hexagon-
based k-means approach. The respective average time taken by 
these four approaches is denoted by hext , meanst , medoidst , 

hex-meanst . Alternatively, the initial set of k centroids  
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of the clusters is of vertices (8) of the hexagonal cell M×M 
lattice: 
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For this lattice-based k-means approach, let us denote by 
*
lat-meansD  and *

lat-meansR  the approximate minima of sums (9) and 
(11), and the respective average time taken by this approach is 
denoted by lat-meanst . 

For gathering “internally” reliable statistics, each algorithm 
is run 10 times for every pair {N, M}, whence the minimal sum 
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of the 10 minima is selected. The computational time is 
averaged over those 10 runs. The accuracy gains are calculated 
for both squared and regular Euclidean distances as 
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The speedup gain is calculated as 
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Overall the simulation by (14)–(16) is to be repeated for 20 
times, whereupon subsequent gains (19)–(42) are averaged. 
This will ensure statistical stability and reliability of the 
performance results by each of the approaches. 

VI. EFFICIENCY 
The accuracy gains (19)–(26) are presented in Table I, where 

the right-side column presents the gains averaged over the 
number of lattice cells. It is clearly seen that the hexagonal-
pattern-based clustering is 4 to 11 % less accurate than k-means, 
but the accuracy loss with respect to k-medoids is slightly less. 
The accuracy losses to both hexagon-based k-means and lattice-
based k-means are almost the same. Besides, the latter two 
approaches outperform both k-means and k-medoids by up to 
2 % (highlighted bold whenever the gain exceeds 1). The only 
exception is the case of 1000 points, where k-means slightly 
outperforms (by less than 0.7 %). The best result is achieved at 
a dataset of 5000 points by using the 10×10 lattice for hexagon-
based k-means versus k-medoids (it is almost 7 % accuracy 
gain). 

The accuracy gains (27)–(34) are presented in Table II, 
where the right-side column presents the gains averaged over 
M. Here the differences by the regular Euclidean distances is 
shorter than those in Table I. Starting from 0.1 million points 
and greater, both hexagon-based k-means and lattice-based k-
means outperform k-means and k-medoids by 0.01 to 0.85 %. 
The best result is achieved at 25 000 points by using the 10×10 
lattice for hexagon-based k-means versus k-medoids. 

The speedup gains (35)–(42) presented in Table III confirm 
that the hexagonal-pattern-based clustering is much faster. The 
speedup gain grows as the dataset becomes larger, but this 
quasi-regularity is violated when either of hexagon-based k-
means and lattice-based k-means is compared to k-means. In 
this case, nevertheless, these approaches are faster at least by a 
few percent.  
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TABLE I 
ACCURACY GAINS (19)–(26) 

  M 

 N, million 
points 2 3 4 5 6 7 8 9 10 Average 

means_hexδ  

0.001 0.87229 0.89676 0.9025 0.90376 0.8978 0.89312 0.8919 0.88166 0.86154 0.88903 
0.005 0.87063 0.90947 0.92372 0.93605 0.94397 0.9425 0.94313 0.94078 0.93626 0.92739 
0.025 0.87399 0.90767 0.92979 0.94125 0.95137 0.95757 0.95803 0.96061 0.96106 0.93792 

0.1 0.87251 0.90949 0.93201 0.94482 0.95569 0.96186 0.96494 0.96922 0.96972 0.94225 
0.5 0.87241 0.90922 0.93262 0.94643 0.95692 0.96304 0.96807 0.97135 0.97407 0.94379 
1 0.87253 0.90965 0.93285 0.94621 0.95746 0.9639 0.96836 0.97204 0.97415 0.94413 

medoids_hexδ  

0.001 0.87599 0.9048 0.91254 0.9137 0.91821 0.91297 0.91248 0.90101 0.92356 0.90836 
0.005 0.87161 0.91114 0.92963 0.95183 0.96276 0.9724 0.96779 0.96855 0.99601 0.94797 
0.025 0.87415 0.90802 0.93787 0.95806 0.97421 0.99114 0.98963 0.99372 1.01696 0.96042 

0.1 0.87256 0.90962 0.93924 0.95903 0.97358 0.98582 0.99061 1.00165 1.00889 0.96011 
0.5 0.87241 0.90926 0.9336 0.95431 0.96789 0.97324 0.98144 0.98792 0.99264 0.95252 
1 0.87253 0.90967 0.9336 0.95326 0.96466 0.97174 0.97838 0.98393 0.98727 0.95056 

hex-means_hexδ  

0.001 0.87237 0.90039 0.90985 0.91035 0.90605 0.90001 0.89751 0.88634 0.86878 0.89463 
0.005 0.87064 0.90971 0.92739 0.93616 0.94209 0.94104 0.94099 0.93846 0.93088 0.92637 
0.025 0.87399 0.90777 0.93131 0.94329 0.95006 0.95466 0.95624 0.95948 0.95893 0.9373 

0.1 0.87251 0.90952 0.93274 0.94507 0.95396 0.9586 0.96206 0.96554 0.96752 0.94084 
0.5 0.87241 0.90923 0.93298 0.94599 0.95411 0.96007 0.96434 0.96756 0.97008 0.94186 
1 0.87253 0.90965 0.93298 0.94598 0.95437 0.96013 0.9645 0.96799 0.97046 0.94207 

lat-means_hexδ  

0.001 0.87237 0.90039 0.90941 0.90805 0.90754 0.89947 0.89994 0.88787 0.86891 0.89488 
0.005 0.87064 0.90971 0.92739 0.93623 0.94218 0.94105 0.94036 0.93801 0.93147 0.92634 
0.025 0.87399 0.90777 0.93131 0.94329 0.95006 0.9547 0.95622 0.95963 0.95902 0.93733 

0.1 0.87251 0.90952 0.93274 0.94507 0.95396 0.9586 0.96205 0.96554 0.96754 0.94084 
0.5 0.87241 0.90923 0.93298 0.94599 0.95411 0.96007 0.96434 0.96756 0.97008 0.94186 
1 0.87253 0.90965 0.93298 0.94598 0.95437 0.96013 0.9645 0.96799 0.97046 0.94207 

means_hex-meansδ  

0.001 0.99991 0.99599 0.99202 0.99301 0.99092 0.99255 0.99367 0.99476 0.99184 0.99385 
0.005 1 0.99974 0.99605 0.99989 1.00201 1.00158 1.00227 1.00247 1.00577 1.00109 
0.025 1 0.99989 0.99836 0.99783 1.00138 1.00305 1.00187 1.00117 1.00222 1.00064 

0.1 1 0.99998 0.99921 0.99973 1.00182 1.00339 1.00299 1.00382 1.00228 1.00147 
0.5 1 0.99999 0.99961 1.00046 1.00294 1.00309 1.00386 1.00391 1.00411 1.002 
1 1 0.99999 0.99987 1.00024 1.00323 1.00392 1.004 1.00418 1.00381 1.00214 

medoids_hex-meansδ  

0.001 1.00416 1.0049 1.00305 1.0038 1.01347 1.01458 1.01659 1.01659 1.06319 1.01559 
0.005 1.00111 1.00157 1.00241 1.01675 1.02197 1.03339 1.02847 1.03206 1.06999 1.02308 
0.025 1.00019 1.00028 1.00705 1.01565 1.02543 1.03822 1.03492 1.03568 1.06052 1.02422 

0.1 1.00005 1.00011 1.00697 1.01477 1.02057 1.02839 1.02967 1.0374 1.04277 1.02008 
0.5 1.00001 1.00003 1.00066 1.00879 1.01444 1.01372 1.01773 1.02104 1.02326 1.01108 
1 1 1.00002 1.00067 1.00769 1.01078 1.0121 1.01439 1.01647 1.01733 1.00883 

means_lat-meansδ  

0.001 0.99991 0.99599 0.9925 0.99553 0.98932 0.99326 0.991 0.99303 0.99163 0.99357 
0.005 1 0.99974 0.99605 0.99981 1.00191 1.00157 1.00295 1.00296 1.00514 1.00112 
0.025 1 0.99989 0.99836 0.99783 1.00137 1.00301 1.00189 1.00102 1.00213 1.00061 

0.1 1 0.99998 0.99921 0.99973 1.00182 1.0034 1.003 1.00381 1.00226 1.00147 
0.5 1 0.99998 0.99961 1.00046 1.00294 1.00309 1.00386 1.00391 1.00411 1.002 
1 1 0.99999 0.99987 1.00024 1.00323 1.00392 1.004 1.00418 1.00381 1.00214 

medoids_lat-meansδ  

0.001 1.00416 1.00491 1.00355 1.00632 1.01182 1.01531 1.01389 1.01483 1.06299 1.01531 
0.005 1.00111 1.00157 1.00241 1.01668 1.02186 1.03338 1.02916 1.03256 1.06931 1.02312 
0.025 1.00019 1.00028 1.00705 1.01565 1.02542 1.03818 1.03495 1.03553 1.06043 1.02419 

0.1 1.00005 1.00011 1.00697 1.01477 1.02057 1.02839 1.02968 1.03739 1.04274 1.02008 
0.5 1.00001 1.00003 1.00066 1.00879 1.01444 1.01372 1.01773 1.02104 1.02326 1.01108 
1 1 1.00002 1.00067 1.00769 1.01078 1.0121 1.01439 1.01647 1.01732 1.00883 
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TABLE II 
ACCURACY GAINS (27)–(34) 

  M 

 N, million 
points 2 3 4 5 6 7 8 9 10 Average 

means_hexρ  

0.001 0.94424 0.95172 0.94652 0.94344 0.94043 0.93276 0.93223 0.9231 0.91157 0.93622 
0.005 0.94511 0.9594 0.96375 0.96774 0.9696 0.96723 0.9663 0.96353 0.9605 0.96257 
0.025 0.94649 0.95868 0.96825 0.97237 0.97638 0.97868 0.97804 0.9789 0.978 0.97064 
0.1 0.94549 0.95991 0.96929 0.97482 0.97962 0.98185 0.98298 0.98471 0.98464 0.9737 
0.5 0.94553 0.9598 0.96986 0.97594 0.98027 0.98303 0.9851 0.98656 0.98778 0.97487 
1 0.9456 0.96005 0.96995 0.97577 0.98059 0.98337 0.98538 0.98706 0.98792 0.97508 

medoids_hexρ  

0.001 0.94523 0.95311 0.94765 0.9402 0.93657 0.92516 0.91886 0.90556 0.90505 0.93082 
0.005 0.94534 0.9598 0.96584 0.97399 0.97591 0.97833 0.97406 0.97171 0.98132 0.96959 
0.025 0.94656 0.95879 0.97159 0.97912 0.98554 0.99256 0.9912 0.99228 1.00084 0.97983 
0.1 0.9455 0.95997 0.97233 0.98038 0.98684 0.99164 0.99331 0.99796 1.00049 0.98094 
0.5 0.94554 0.95983 0.97028 0.97906 0.98453 0.98698 0.99042 0.993 0.99511 0.9783 
1 0.94561 0.96007 0.97027 0.97853 0.98341 0.98643 0.98924 0.99162 0.99302 0.97758 

hex-means_hexρ  

0.001 0.94434 0.95467 0.95503 0.95366 0.95075 0.94681 0.9459 0.9391 0.9287 0.94655 
0.005 0.94513 0.95969 0.96648 0.96986 0.97196 0.97064 0.97021 0.96783 0.96323 0.965 
0.025 0.9465 0.95883 0.96932 0.9739 0.97676 0.97893 0.97902 0.98069 0.97959 0.9715 
0.1 0.94549 0.95994 0.96981 0.97518 0.97919 0.9812 0.98256 0.98406 0.98489 0.97359 
0.5 0.94553 0.95981 0.97007 0.9758 0.97935 0.98209 0.98398 0.98544 0.98652 0.97429 
1 0.9456 0.96005 0.97003 0.97577 0.97953 0.98208 0.98407 0.98567 0.98672 0.97439 

lat-means_hexρ  

0.001 0.94434 0.95465 0.95468 0.95221 0.95169 0.94645 0.94734 0.94 0.92883 0.94669 
0.005 0.94513 0.95969 0.96648 0.96986 0.9719 0.97064 0.96982 0.96763 0.96362 0.96498 
0.025 0.9465 0.95883 0.96932 0.9739 0.97677 0.97895 0.97901 0.98075 0.97966 0.97152 
0.1 0.94549 0.95994 0.96981 0.97518 0.97919 0.9812 0.98255 0.98406 0.98491 0.97359 
0.5 0.94553 0.95981 0.97007 0.9758 0.97935 0.98209 0.98398 0.98544 0.98652 0.97429 
1 0.9456 0.96005 0.97003 0.97577 0.97953 0.98208 0.98407 0.98567 0.98672 0.97439 

means_hex-meansρ  

0.001 0.9999 0.99692 0.99112 0.98933 0.98914 0.98524 0.98552 0.98298 0.98161 0.98909 
0.005 0.99998 0.99969 0.99718 0.99782 0.99757 0.9965 0.99597 0.99556 0.99716 0.99749 
0.025 1 0.99984 0.99889 0.99843 0.9996 0.99974 0.999 0.99817 0.99838 0.99912 
0.1 1 0.99997 0.99946 0.99964 1.00044 1.00066 1.00042 1.00067 0.99974 1.00011 
0.5 1 0.99999 0.99979 1.00013 1.00094 1.00096 1.00114 1.00113 1.00128 1.0006 
1 1 0.99999 0.99991 1 1.00109 1.00132 1.00133 1.00141 1.00122 1.0007 

medoids_hex-meansρ  

0.001 1.00094 0.99836 0.9923 0.9859 0.9851 0.97719 0.97137 0.9643 0.97458 0.98334 
0.005 1.00022 1.00011 0.99934 1.00426 1.00407 1.00795 1.00396 1.00401 1.01878 1.00475 
0.025 1.00007 0.99995 1.00234 1.00536 1.00898 1.01392 1.01245 1.01182 1.02169 1.00851 
0.1 1.00001 1.00003 1.0026 1.00534 1.00782 1.01064 1.01094 1.01413 1.01583 1.00748 
0.5 1 1.00001 1.00022 1.00333 1.00529 1.00498 1.00654 1.00767 1.00871 1.00408 
1 1 1.00001 1.00024 1.00283 1.00396 1.00443 1.00526 1.00603 1.00638 1.00324 

means_lat-meansρ  

0.001 0.9999 0.99694 0.99149 0.99085 0.98816 0.98566 0.98403 0.98203 0.98146 0.98895 
0.005 0.99998 0.99969 0.99718 0.99781 0.99764 0.9965 0.99637 0.99577 0.99676 0.99752 
0.025 1 0.99984 0.9989 0.99842 0.9996 0.99973 0.99901 0.99811 0.9983 0.9991 
0.1 1 0.99997 0.99946 0.99964 1.00044 1.00067 1.00043 1.00066 0.99972 1.00011 
0.5 1 0.99999 0.99979 1.00013 1.00094 1.00096 1.00113 1.00113 1.00128 1.0006 
1 1 0.99999 0.99991 1 1.00109 1.00132 1.00133 1.00141 1.00121 1.0007 

medoids_lat-meansρ  

0.001 1.00094 0.99839 0.99267 0.98741 0.98413 0.9776 0.96991 0.96337 0.97444 0.98321 
0.005 1.00022 1.00011 0.99934 1.00425 1.00413 1.00795 1.00437 1.00422 1.01837 1.00477 
0.025 1.00007 0.99995 1.00234 1.00536 1.00898 1.01391 1.01246 1.01176 1.02162 1.00849 
0.1 1.00001 1.00003 1.0026 1.00534 1.00782 1.01064 1.01095 1.01412 1.01582 1.00748 
0.5 1 1.00001 1.00022 1.00333 1.00529 1.00498 1.00654 1.00767 1.00871 1.00408 
1 1 1.00001 1.00024 1.00283 1.00396 1.00443 1.00526 1.00603 1.00638 1.00324 
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TABLE III 
SPEEDUP GAINS (35)–(42) 

  M 

 N, million 
points 2 3 4 5 6 7 8 9 10 Average 

means_hexτ  

0.001 1.89969 4.51871 3.8618 3.14053 2.53084 2.60107 2.32278 2.09121 1.74674 2.74593 
0.005 3.07082 5.99538 8.06446 8.47069 7.94407 7.4883 7.05027 6.30224 6.11294 6.72213 
0.025 2.83038 10.73231 17.09562 22.7483 24.39278 25.33783 26.55466 25.6101 25.02445 20.03627 
0.1 3.39836 15.17621 22.39912 275.0207 33.60841 38.14042 42.23587 44.42325 45.36001 57.75137 
0.5 4.48159 19.628 25.38836 31.7869 35.89336 40.18278 45.0587 47.32611 49.02283 33.19652 
1 4.65057 20.39352 26.28289 31.62051 36.86083 39.6733 43.1334 47.45195 50.11196 33.35321 

medoids_hexτ  

0.001 6.79874 24.01548 28.88107 25.17684 21.62531 17.74281 18.57348 18.30023 10.22864 19.03807 
0.005 21.3437 45.25801 46.32436 41.37876 32.49575 25.31083 29.04275 31.42211 20.56455 32.5712 
0.025 30.15302 66.43556 63.5175 61.66577 58.57642 48.01696 55.46062 61.73672 38.83504 53.82196 
0.1 43.39594 88.99055 79.79207 77.18132 75.142 66.64599 76.65757 56.6734 52.05424 68.50368 
0.5 112.2538 195.0321 167.1596 141.9144 124.525 119.8729 104.5019 88.00489 86.48418 126.6387 
1 194.2616 334.2102 306.3857 264.2169 238.4299 208.6688 167.8638 159.8016 164.5271 226.4851 

hex-means_hexτ  

0.001 2.53426 3.7887 3.46011 2.81387 2.36629 2.30662 2.03392 1.87765 1.69367 2.54168 
0.005 3.46014 5.5992 5.46725 5.25466 5.02206 5.37465 4.86463 4.37067 4.81849 4.91464 
0.025 3.46085 10.01829 11.39397 12.51954 13.16258 14.1084 15.52732 14.21198 16.29125 12.29935 
0.1 3.82899 15.65819 14.22204 16.29222 18.86183 20.70084 27.09107 27.85902 28.44096 19.21724 
0.5 5.01383 20.91567 19.12489 21.94877 30.48905 32.5675 35.84348 37.80291 40.1673 27.09704 
1 5.2249 21.39962 20.59938 23.7617 35.94803 34.93683 39.20157 57.66443 45.04419 31.53118 

lat-means_hexτ  

0.001 2.57571 4.06739 3.46465 2.90213 2.38556 2.33816 2.11076 1.94047 1.83962 2.62494 
0.005 3.47949 5.57614 5.51818 5.15354 5.12227 5.55867 5.25433 4.66409 5.06068 5.04304 
0.025 3.54948 10.13742 11.65303 12.89796 13.71983 14.19443 16.24564 14.5464 17.14895 12.67702 
0.1 3.98975 15.79031 14.43418 16.473 19.66281 21.25765 27.71476 28.00613 29.02658 19.59502 
0.5 5.17917 20.98249 19.26278 22.73203 30.6513 33.13446 36.18929 37.76809 40.49365 27.37703 
1 5.39525 21.43099 20.76754 24.06075 36.16675 35.14111 39.35985 44.07382 45.29909 30.18835 

means_hex-meansτ  

0.001 0.72309 1.21397 1.14368 1.11789 1.06955 1.12478 1.14435 1.11224 0.99564 1.07169 
0.005 0.88729 1.148 1.52381 1.6568 1.63136 1.44317 1.46536 1.45097 1.28426 1.38789 
0.025 0.8186 1.14556 1.58974 1.92351 1.91008 1.86975 1.79397 1.85347 1.57862 1.60926 
0.1 0.89038 1.0259 1.6231 11.61969 1.86131 1.88568 1.63353 1.62196 1.63377 2.64392 
0.5 0.89713 0.93995 1.35962 1.47975 1.19359 1.24606 1.28281 1.26519 1.23307 1.2108 
1 0.89112 0.9531 1.30007 1.34984 1.02715 1.14121 1.10468 1.04286 1.11518 1.1028 

medoids_hex-meansτ  

0.001 2.60284 6.37981 8.46326 8.93119 9.08095 7.69491 9.14442 9.74432 5.841 7.54252 
0.005 6.21533 8.58658 8.79328 8.12356 6.65488 4.85986 6.02661 7.22491 4.33098 6.75733 
0.025 8.76251 7.1972 5.89564 5.23667 4.58038 3.54484 3.77408 4.46051 2.44956 5.10015 
0.1 11.40316 6.01063 5.78297 4.88757 4.15655 3.29363 2.96486 2.06773 1.87568 4.71586 
0.5 22.4827 9.34815 8.94631 6.60174 4.14298 3.72474 2.97167 2.35049 2.17492 6.97152 
1 37.5249 15.62051 15.10354 11.30547 6.64085 5.99947 4.30447 3.50984 3.58935 11.51093 

means_lat-meansτ  

0.001 0.70982 1.14945 1.13252 1.08614 1.06121 1.11615 1.10475 1.07716 0.94256 1.0422 
0.005 0.88286 1.15964 1.51106 1.67444 1.58983 1.39739 1.36503 1.35423 1.22488 1.35104 
0.025 0.80012 1.13085 1.54822 1.85723 1.84822 1.85991 1.69553 1.80807 1.48195 1.5589 
0.1 0.85645 1.01352 1.5967 11.62528 1.78395 1.8372 1.59534 1.61189 1.59773 2.61312 
0.5 0.86812 0.93659 1.35226 1.4302 1.18631 1.22319 1.26792 1.26721 1.22365 1.19505 
1 0.8628 0.95168 1.29029 1.33238 1.02116 1.1355 1.10259 1.07984 1.10868 1.09832 

medoids_lat-meansτ  

0.001 2.55541 6.04582 8.35436 8.62979 8.99902 7.54891 8.77657 9.37748 5.5099 7.31081 
0.005 6.14294 8.65327 8.68726 8.18229 6.47111 4.70817 5.6051 6.74438 4.12342 6.59088 
0.025 8.54166 7.10218 5.73942 5.05257 4.42638 3.53021 3.56785 4.34768 2.30023 4.95646 
0.1 10.95723 5.93942 5.68942 4.81713 3.98601 3.2075 2.89574 2.05418 1.83524 4.59799 
0.5 21.75165 9.31317 8.8971 6.38284 4.1192 3.65536 2.93805 2.3543 2.15846 6.84113 
1 36.32102 15.59706 15.0017 11.15559 6.60284 5.96848 4.29965 3.63631 3.56574 11.34982 
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There is another important inference from Tables I and II. As 
the number of lattice cells is increased, both hexagon-based k-
means and lattice-based k-means increase their accuracy gains. 
This quasi-regularity is absent for the speedup gain. Table III 
shows that the top speedup gain is achieved at about 5 to 7 
lattice cells along an axis. 

The instance with the almost 7 % accuracy gain achieved at 
5000 points by the 10×10 lattice for hexagon-based k-means 
versus k-medoids corresponds to an accuracy gain of 1.878 % 
in Table II. Here, the hexagon-based k-means approach has 
performed about 4.33 times faster than k-medoids. However, 
from comparing accuracy gains in both Tables I and II it is 
inferred that k-medoids on average has performed worse than k-
means. On average 
 means_hex-means medoids_hex-meansδ < δ , (43) 

 means_lat-means medoids_lat-meansδ < δ , (44) 

 means_hex-means medoids_hex-meansρ < ρ , (45) 

 means_lat-means medoids_lat-meansρ < ρ , (46) 

although inequalities (45) and (46) do not hold at 1000 points, 
while inequalities (43) and (44) turn into equalities for the case 
of a million points by using the 2×2 lattice (the respective 
accuracy gain is just 1, i. e., a couple of compared methods 
perform with the same accuracy). Therefore, it is correct to 
compare both hexagon-based k-means and lattice-based k-
means to only k-means.  

Tables I and II also show that hexagon-based k-means and 
lattice-based k-means perform at almost the same accuracy rate. 
Besides, according to Table III, hexagon-based k-means is by 
0.41 to 3.23 % faster than lattice-based k-means (it is 1.85 % 
for the example in Fig. 3). Therefore, it is reasonable to make 
further conclusions on just the hexagon-based k-means 
approach. 

 

 
7×7 lattice  

k-means 

 
lattice-based k-means 

 
hexagon-based k-means 

Fig. 3. The four results of partitioning a dense cloud of 125 thousand points into 49 clusters. While applying the hexagonal cell 7×7 lattice singly is at least 30 times 
faster than k-means, it is 3.72 % less accurate by the squared-Euclidean-distance metric and 1.72 % less accurate by the regular-Euclidean-distance metric. The 
hexagon-based k-means approach is respectively 0.41 % and 0.14 % more accurate by these metrics than k-means. Besides, it is 1.85 % faster than lattice-based k-
means (the visual difference is hardly noticeable) and is slightly more accurate than the latter (the difference in their gains is of order of 10−7 to 10−6. 
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VII. DISCUSSION 
A hexagonal cell lattice singly, without further k-means 

clustering, is 1.4 to 9 % less accurate (by the regular-Euclidean-
distance metric; see Table II); it is an extremely fast method to 
determine an upper bound of the clustering quality gap. The 
lattice speedup grows as the number of lattice cells along an 
axis is increased (see the upper two grey stripes in Table III). It 
is 42 to 50 times versus the k-means approach for 0.1 million 
points and greater by no fewer than 8 lattice cells along an axis 
(see the top grey stripe in Table III). 

Furthermore, if 0.1 million points and greater are partitioned 
into at least a few tens of clusters, the hexagonal-pattern-based 
clustering is just 1.4 to 1.8 % less accurate (in regular Euclidean 
distances) than the hexagon-based k-means approach (see 
Table II). Nevertheless, the hexagonal-pattern-based clustering 
is at least 20 times faster for such instances. 

Why is hexagon-based k-means by 0.41 to 3.23 % faster than 
lattice-based k-means (on average, it is 2.2 % faster)? A 
plausible explanation is because the centroids by hexagon-
based k-means are located better than the cell centres by lattice-
based k-means, so the latter k-means takes more steps to 
converge. Why does the hexagonal pattern improve clustering, 
after all? Generally speaking, the hexagonal structure is optimal 
for a planar square region. Therefore, as the density of points 
increases, the best clustering result tends to have a hexagonal 
structure, and thus applying the respective hexagonal cell lattice 
speeds up the convergence. 

It is quite obvious that the suggested approach is easily 
applicable to practical problems dealing with clustering. The 
hexagonal cell lattice is quickly formed as a two-dimensional 
array. Creating set (6) as a cluster that is a hexagon enclosing 
points is a standard computational procedure. While we do not 
overestimate the significance of our approach, it is a specific 
supplement to the theory and practice of centroid-based 
clustering that makes a small yet reasonable and valuable step 
forward. 

VIII. CONCLUSION 
We have suggested a hexagonal-pattern-based approach to 

partition flat nodes into clusters quicker than the k-means 
algorithm and its modifications do. Our method consists of two 
steps. First, we apply a hexagonal cell lattice to nodes to 
approximately determine centroids of the clusters. Second, the 
centroids are used as initial centroids to start the k-means 
algorithm. Based on the simulation results, we have ascertained 
that the suggested method is efficient for centroid-based 
clustering of dense nearly-square point clouds of 0.1 million 
points and greater by using no fewer than 6 lattice cells along 
an axis. Compared to k-means, our method is at least 10 % 
faster and it is about 0.01 to 0.07 % more accurate in regular 
Euclidean distances. In squared Euclidean distances, the 
accuracy gain is 0.14 to 0.21 %. 

In addition, an upper bound of the clustering quality gap is 
determined the fastest by directly applying a hexagonal cell 
lattice of the respective size. The upper bound estimation is 
important to efficiently proceed with a more accurate method. 

Besides, when the number of clusters is to be optimized, the 
upper bound can used as a variable of the optimization. We 
expect that the optimal number of clusters would correspond to 
the minimum of the upper bound. 

Obviously, distinct limitations exist here. First, the lattice 
size must be compatible with the number of clusters. Second, 
the cloud of points must not much vary in density and be of 
nearly-square shape. The first limitation can be almost removed 
by applying a bigger-sized lattice to cover the point cloud so 
that the required number of lattice cells would be formed. Some 
empty lattice cells at boundaries of the cloud do not matter and 
are ignored. The second limitation, however, is not removable. 

Our contribution comes into the optimized centroid-based 
clustering of flat objects, which is practically important to 
efficiently solve the respective metric facility location problem. 
We believe it is possible that the hexagonal-pattern-based 
approach can be successfully applied to clustering objects with 
a greater number of features. The efficiency for such cases is 
yet to be studied separately. 
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