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Abstract — An approach to optimize centroid-based clustering of
flat objects is suggested, which is practically important for
efficiently solving metric facility location problems. In such
problems, the task is to find the best warehouse locations to
optimally service a given set of consumers. An example is assigning
mobiles to base stations of a wireless communication network. We
suggest a hexagonal-pattern-based approach to partition flat
nodes into clusters quicker than the k-means algorithm and its
modifications do. First, a hexagonal cell lattice is applied to nodes
to approximately determine centroids of the clusters. Then the
centroids are used as initial centroids to start the k-means
algorithm. The suggested method is efficient for centroid-based
clustering of dense nearly-square point clouds of 0.1 million points
and greater by using no fewer than 6 lattice cells along an axis.
Compared to k-means, our method is at least 10 % faster and it is
about 0.01 to 0.07 % more accurate in regular Euclidean distances.
In squared Euclidean distances, the accuracy gain is 0.14 to
0.21 %. Applying a hexagonal cell lattice determines an upper
bound of the clustering quality gap.

Keywords — Centroid-based clustering, hexagonal pattern,
initialization, square cloud.

1. CHALLENGE IN CENTROID-BASED CLUSTERING

Clustering flat objects, among the others, has many practical
implementations such as image analysis [1], object recognition
[2], anomaly detection [3], [4], determining structural similarity
of chemicals (in mathematical chemistry) [5], [6], finding
weather regimes or preferred sea level pressure atmospheric
patterns (in climatology) [7], financial analysis and stock price
comovement [8], geological data analysis [9], etc. Another
implementation, specifically of centroid-based clustering,
consists in assigning mobiles to base stations of a wireless
communication network [10], [11]. In general, clustering flat
objects is a metric facility location problem, where the task is
to find the best warehouse locations to optimally service a given
set of consumers. Warehouses are seen as cluster centres
(centroids) and the data to be clustered are seen as consumer
locations [12], [13].

The centroid-based clustering approach that is the most
referred to and used is the method of k-means and its
modifications like k-medoids and k-means++ [14], [15]. In
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general, the centroid-based clustering problem is to partition N
observations into & clusters by minimizing the sum of within-
cluster squared Euclidean distances [16]. It is an NP-hard
optimization problem, so the k&-means algorithm was developed
as an efficient heuristic to converge quickly to a local optimum,
i. e., an approximate solution of an acceptable inaccuracy. A
challenge exists when too many points (even two-dimensional
or, in other words, flat objects) are to be clustered, and, in
addition, when the number of clusters is increased. Then the
algorithm slows down significantly. For instance, a set of
12 500 points scattered uniformly within a unit square is
partitioned into 64 clusters within 0.32s on a dual-core
processor Intel Core 15-7200U@2.50GHz. When the dataset is
enlarged twice (within the same square), it takes up to 1.7 s (the
computational time variation exists because it depends on the
initialization). Doubling the dataset once more, results in the 64
clusters of 50 000 points are obtained in about 2.7 s (Fig. 1).

Fig. 1. An example of 50 000 flat points partitioned into 64 clusters by using
the k-means algorithm. The centroids are marked with circles. The points are
scattered such that the point cloud is nearly square. The inner clusters mostly
constitute slightly contorted irregular hexagons. The boundary clusters mostly
are contorted irregular pentagons with the outer sides “torn” in the visualization.

©2023 Author(s). This is an open access article licensed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0).
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According to Fig. 1, one can clearly see that the resulting
cluster areas closely resemble irregular polygons, which mostly
are contorted irregular hexagons inside the nearly-square point
cloud and are contorted irregular pentagons on its boundaries.
Moreover, the cluster centroids in this particular example are
located such that they remind vertices of a contorted 8-by-8
lattice. Nevertheless, there are no clearly distinguishable eight
rows and eight columns of the polygons embracing the clusters.

II. MOTIVATION, AIM, AND TASKS TO BE ACCOMPLISHED

The centroid-based clustering algorithms do not guarantee
convergence to the global optimum [14], [15], [17]. The result
depends on choosing initial centroids of the clusters before
proceeding with the algorithm iterations [15], [18], [19].
Different initializations and subsequent multiple runs of the
algorithm result in sets of clusters that differ in locations of their
centroids, cluster size, and eventual sum of within-cluster
squared Euclidean distances [14], [18]. Owing to this and to the
fact that the k-means algorithm is usually fast, it is run multiple
times with different initializations (i.e., the starting set of
clusters). Thereupon the best result, whose sum is the least, is
selected as the solution [15], [17], [20], [21].

The worst-case convergence, when the running time is
exponential [22], occurs rarely only for particular certain point
sets, not like those in Fig. 1 or similar “box-like” point sets. The
smoothed running time of the k&-means algorithm is polynomial
[14], [23]. Moreover, the algorithm is often considered to be of
roughly linear complexity in cases, where the data do have a
clustering structure (or similar to that in Fig. 1). In such cases,
the number of iterations until convergence is often small, and
the k-means algorithm just slightly improves the clustering
result after a few starting iterations [18]-[20].

Furthermore, the algorithm tends to determine clusters of
comparable spatial extent (similarly to the clusters in Fig. 1). It
spends a lot of processing time computing the distances
between each of the k centroids and the N data points. Since
points usually stay in the same clusters after a few iterations,
much of these operations are useless, making the algorithm very
inefficient. In particular, the result in Fig. 1 prompts that
clusters in such dense nearly-square point clouds tend to have a
form of an irregular polygon, mostly being hexagon. It is natural
to expect that assigning points to clusters whose borders are
defined by hexagons would not worsen much the quality of
clustering. Therefore, the aim is to develop a method that could
speed up clustering dense nearly-square point clouds by using a
hexagonal pattern. To achieve the aim, the following six
standard tasks are to be accomplished:

1. To suggest a hexagonal-pattern-based approach to
partition flat points into clusters quicker than the k-means
algorithm and its modifications do.

2. To suggest a method of measuring the quality of clustering
by the suggested approach, including both the accuracy and
computational time. The quality of clustering should be
inherited by its efficiency.

3. To organise a simulation set-up for gathering statistics of
clustering nearly-square point clouds by using the k-means and

k-medoids algorithms along with the suggested clustering
approach.

4. Based on the simulation results, to ascertain whether the
suggested approach is efficient. If it is efficient, determine
limits within which this efficiency is maintained.

5. Whichever the efficiency is, to discuss applicability and
significance of the suggested approach.

6. To conclude on the contribution and a possibility of further
research.

III. HEXAGONAL PATTERN
Let us denote by P={P, =[x, yi]}l_]\i1 a set of N two-

dimensional points (objects), where x; and y; are the horizontal
and vertical components, respectively. Given an initial set of £

centroids {C S =[a" B ]} of the clusters, the k-means

k
Jj=1
algorithm proceeds by alternating between the assignment and
update steps [16], [20], [22], [24]. At assignment step s, cluster
jis aset

T,(s)= {[x,. yl.]:(xi —aﬁ.s))z +(y,~ —bf) )2 <
é(x,—af]“))2+(yi—b;s))2 Vq:l,_k} by s=1,2,..., (1)

where each point is assigned to exactly one cluster. At the
update step, which follows (1), the centroids are recalculated as

C,(s+1)= [a;m) bj(_mq _

1 _
:|Tj(5)| Z P,s=12,.. )

BT (5)

In k-means, the cluster centroid is not necessarily one of the
points of the given set P:{[xl. yi]};\i] , but it is just the

average (mean) of the points in the cluster. In contrast to the &-
means algorithm, k-medoids takes C; (s)e P at every step s

(i. e., it chooses actual data points as centroids referred to as
medoids), and thereby allows for greater interpretability of the
cluster centroids than in k-means.

A hexagonal cell lattice of size M*xM is created by enclosing
nodes (1) within rectangle

max x; — min x,

. i=1, N i=1, N i=l, N i=1, N
N x, —————————; maxy, + ———— |X
i=1 N 2M -1 i=1. 2M -1
[ max y, —min y, max y, —min y,
. i=1, N i=l, N i=1, N i=1, N
x| min y, — ;max y; + -3)
=1, N 3IM -1 =1, N 3M -1

The area within rectangle (3) is uniformly broken into M?
hexagonal cells whose vertices have horizontal

(hor) —
|:hl (mhor > TMert ):|l><6 -

max x; —min x,
=minx, +| 0 ¥3 NERNGY N} Y P S
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i=l, N i=1, N ) i=l, N i=l, N
X T (mhor - )
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for m,, =1, M and m, =1, 4)

and vertical
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3M -1 3M -1
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where

coordinates at hexagonal location [m,, m,,] ,

function y(x) returns the integer part of number x. A convex
hull over vertices

1
Chex (mhor’ mvel't ) = [xhex (mhor’ mven) yhex (mhor’ mven )] B |H(m m )| . Z
hor ? vert H (

2

= Z )’ei (mhor > Myey )

H (1o s Mo )EH (Mg My ) H; (myor, m,

that are not necessarily the vertices

Vhex (mhor’ mvert ) = [uhex (mhor’ mvert) Whex (mhor’ mvert )] =

1 6 or 1 . ve
- g';hi(h )(mhor’ mven) g;h} rt)(’/ﬂhowinvel‘t) E]Rz

for m,, =1, M and m, =1, M (8)

of the hexagonal cell MxM lattice (that can be obtained by
stretching, either horizontally or vertically, the respective MxM
lattice of regular hexagons). Similarly to k-means, cluster
centroid (7) is not necessarily one of the points of the given set
P={[x yl.]}fi1 . However, unlike k&-means and k-medoids, the

centroids do not matter while a set of points is clustered by the
hexagonal pattern by (3)—(6).

An example of applying the hexagonal pattern by (3)—(6) to
nodes from Fig. 1 is shown in Fig. 2. The 64 clusters of 50 000
points are obtained in about 0.09 s that is 30 times faster than
the result in Fig. 1 produced by k-means. It is clear that the
protruding clusters on the left and right can be 50 % filled at
most. The non-filled area of the bottom and upper boundary
clusters is, for a unit regular hexagon (whose side length is

equal to a unit), equal to NE) / 4 units. The area of a unit regular
hexagon is

\/3/4_,.1.\/54.\/5/4:% units.

vert )EH (Mo My )

6
{h,-(hor) (mhor b mven )’ hi(ven) (mhor’ mverl )}

i=1

in R” is a hexagon X (m,,,m,,) that can be obtained by

stretching (either horizontally or vertically) the respective

regular hexagon [25]. This hexagon encloses nodes belonging
to the respective cluster created as a set
H (mhor 4 mven ) =

= {Hz (mhor’ mvert ) = [)’et (mhor’ mverl) j)i (mhor’ mvert )] =
:[xi yi]EP:[xi yi]EX(mhor’mveIt)}
for my, =1, M and m =1, M. (6)

Running operations of checking the membership in (6) is far
faster than running iterations by (1) and (2) [26], [27]. Thus,
this hexagonal-pattern-based approach partitions flat points into
clusters quicker than the k-means algorithm and its
modifications do.

Obviously, centroids of the clusters created by (3)—(6) are
points

Hi (mhor’ mvert ) =

i+ (Mnor s Myery )EH (Mg s My )

P, (myy,m ) |eR* for m, =1, M and m

LM ()

vert

Therefore, such clusters can be filled at most by 5/6 of the
hexagon area.

Fig. 2. An example of applying the hexagonal pattern by (3)—(6) to nodes from
Fig. 1 for creating 64 clusters. The hexagonal cell 8x8 lattice is also shown. The
four protruding clusters on the left and four ones on the right are nearly half-
filled. The bottom and upper boundary clusters are nearly 83.33 % filled as well.
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Despite the centroid-based clustering by the hexagonal
pattern is very fast, it is less accurate. In the example in Fig. 2,
the sum of within-cluster squared Euclidean distances, with
respect to hexagonal centroids (7), is 1.0509 times greater than
that in Fig. 1. Nevertheless, the quality of clustering must not
be considered only by the accuracy.

IV. QUALITY OF CLUSTERING

At step s of k-means (k-medoids), the abovementioned
sum of within-cluster squared Euclidean distances is calculated
as

‘Z[P;J(xf‘“5'”)2+(yf‘b-5‘”>2ﬂ' ©)

2

P, e H (Myor , Myery )

-3 3

My =1 m =1

In the centroid-based clustering algorithms, sum (9) is
theoretically minimized. In practice, the algorithm is kept
running while

2
() _ (5D
\/(alﬂ - am )

at least for cluster m and the maximal number of iterations is
not exceeded. Along with (9), the regular Euclidean distances
can be used to estimate the accuracy:

R(s)zi[ > J(x,-—a;s>>2+<y,~—b$>>2j- a

1\ P<T,(s)

+(b —b,(,f’”)z >¢ for some £>0 (10)

The accuracy of the hexagonal-pattern-based clustering is
measured similarly to (9) and (11):

2.

Py & H (ntyor s e )

Mpor =1 e =1

The quality of clustering also depends on how fast it is.
Obviously, the hexagonal-pattern-based clustering is fast
enough compared to both k-means and k-medoids. Then, if
value (12) was tolerably greater than value (9), the hexagonal
approach would be efficient.

V. SIMULATION SET-UP

To see how efficient the suggested clustering approach is, let
the number of data points be

Ne{looo,sooo, 25000,105,5-105,10"} (14)
and define the number of lattice cells by
Me {ﬁ)} . (15)
To generate nearly-square point clouds, every point
[x, »]=[& ¢]fori=1, N (16)

where & and {; are values of two independent random variables
distributed uniformly on the open interval (0;1).

and R’

hex

Let us denote by D; the approximate minima of

sums (12) and (13), respectively. Similarly, let us denote by
D, and R

means

. the approximate minima of sums (9) and (11)

calculated for clusters partitioned by k-means. When k-medoids
and R’
to the three approaches to clustering, the fourth one can be

based on a specific initialization of the k-means algorithm. In
this case,
b’ ]=C

is used, these are denoted by D’ In addition

medoids medoids *

hex (mhor s mven

C,(1)= [aﬁl)

([xi _xhcx (mhor’ mvcrl )]2 + [yl - yhcx (mhor’ mvcrl )]2 )] H (12)
\/['xi _xhex (mhor’ mverl )]2 +[yi _yhex (mhor’ mven )]2 J N (13)
= ['xhex (mhor’ mven ) yhex (mhor’ mvert )]
by -] :(mhor _1)'M+mvcrt
for my,, =1, M and m_, =1, M , (17)

i. e. centroids (7) of the clusters created by the hexagonal
pattern are used as an initial set of k£ centroids

fc,m)=[a "],
and R the

approximate minima of sums (9) and (11) for this hexagon-
based k-means approach. The respective average time taken by
these four approaches is denoted by ¢, t t

Alternatively, the initial set of £ centroids

{c,m=[a" w7}

of the clusters is of vertices (8) of the hexagonal cell MxM
lattice:

of the clusters. Let us denote by D,

ex-means hex-means

ex °> “means * “medoids °

thex-means .

Cj (1) = |:a_(/'1) b(l):| hex (mh0r9 mven) =
= [uhex (mhor’ mven) Whex (mhor’ mven )]

by j:(mhor _1).M+mvet1

=1, M. (18)
For this lattice-based k-means approach, let us denote by
Dy s @nd R; the approximate minima of sums (9) and
(11), and the respective average time taken by this approach is
denoted by #,,, 1 euns -

For gathering “internally” reliable statistics, each algorithm

is run 10 times for every pair {N, M}, whence the minimal sum

for m,,, =1, M and m,,,
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of the 10 minima is selected. The computational time is
averaged over those 10 runs. The accuracy gains are calculated
for both squared and regular Euclidean distances as

*

D,
_ “means
6meansihe:x - D* H (19)
hex
%
D_ ..
_ ~medoids
8medoidsihex - D* > (20)
hex
*
D,
__ —hex-means
8hex-meansihex - D* > (21)
hex
*
D,
_ lat-means
8lat-meansihex - D* s (22)
hex
*
D
— means
Smeansihex-means - D* s (23)
hex-means
*
— medoids
medoids_hex-means ~ D*— s (24)
hex-means
*
D,
— means
8meansilat-means - D* s (25)
lat-means
*
D_ .
— medoids
6medoidsila\t-means - D* > (26)
lat-means
*
R
_ Z“means
pmeansﬁhex - R* > (27)
hex
*
R_...
_ ~"medoids
pmedoidsﬁhex - R* H (28)
hex
*
R
__ " “hex-means
phex-meansihex - R* > (29)
hex
*
R
__ ~'lat-means
plat-meansihex - R* s (30)
hex
*
R
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pmcansﬁhcx-mcans - F > (3 1)
hex-means
*
R
— medoids
pmedoidsihex-means - R* > (32)
hex-means
*
R
—_ means
pmeansilat-means . s (33)
lat-means
*
— Rmedoids (3 4)
pmedoidsﬁlat-means T .
lat-means
The speedup gain is calculated as
—_ tﬂ'lCanS (3 5)
Tmeansﬁhex - >
thex

t .
__ “medoids
Tmedoids_hex - ¢ s (3 6)
hex
— thex-means (3 7)
Thex-meansﬁhex - >
Z‘]1c>(
— tlat-mea.ns (3 8)
Tlat-meansﬁhex - >
thcx
T _ ZLmeans (3 9)
means_hex-means H
hex-means
— Zmedoids ( 4 O)
Tmedoidsfhex-means - >
hex-means
__ __“means
Tmeansilat-means - 4 (4 1 )
tlat-means
T _ tmcdoids (42)
medoids_lat-means .
tlat-means

Overall the simulation by (14)—(16) is to be repeated for 20
times, whereupon subsequent gains (19)—(42) are averaged.
This will ensure statistical stability and reliability of the
performance results by each of the approaches.

VI. EFFICIENCY

The accuracy gains (19)—(26) are presented in Table I, where
the right-side column presents the gains averaged over the
number of lattice cells. It is clearly seen that the hexagonal-
pattern-based clustering is 4 to 11 % less accurate than k-means,
but the accuracy loss with respect to k-medoids is slightly less.
The accuracy losses to both hexagon-based k-means and lattice-
based k-means are almost the same. Besides, the latter two
approaches outperform both k-means and k-medoids by up to
2 % (highlighted bold whenever the gain exceeds 1). The only
exception is the case of 1000 points, where k-means slightly
outperforms (by less than 0.7 %). The best result is achieved at
a dataset of 5000 points by using the 10x10 lattice for hexagon-
based k-means versus k-medoids (it is almost 7 % accuracy
gain).

The accuracy gains (27)—(34) are presented in Table II,
where the right-side column presents the gains averaged over
M. Here the differences by the regular Euclidean distances is
shorter than those in Table I. Starting from 0.1 million points
and greater, both hexagon-based k-means and lattice-based -
means outperform k-means and k-medoids by 0.01 to 0.85 %.
The best result is achieved at 25 000 points by using the 10x10
lattice for hexagon-based k-means versus k-medoids.

The speedup gains (35)—(42) presented in Table III confirm
that the hexagonal-pattern-based clustering is much faster. The
speedup gain grows as the dataset becomes larger, but this
quasi-regularity is violated when either of hexagon-based k-
means and lattice-based k-means is compared to k-means. In
this case, nevertheless, these approaches are faster at least by a
few percent.
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TABLE 1
ACCURACY GAINS (19)—(26)
M

N,pr(t)lillllltlson 5 3 4 5 6 7 8 9 10 Average
0.001 | 0.87229 | 0.89676 | 0.9025 | 0.90376 | 0.8978 | 0.89312 | 0.8919 | 0.88166 | 0.86154 | 0.88903
0.005 | 0.87063 | 0.90947 | 0.92372 | 0.93605 | 0.94397 | 0.9425 | 0.94313 | 0.94078 | 0.93626 | 0.92739
0.025 | 0.87399 | 0.90767 | 0.92979 | 0.94125 | 0.95137 | 0.95757 | 0.95803 | 0.96061 | 0.96106 | 0.93792
means_hex 0.1 0.87251 | 0.90949 | 0.93201 | 0.94482 | 0.95569 | 0.96186 | 0.96494 | 0.96922 | 0.96972 | 0.94225
0.5 0.87241 | 0.90922 | 0.93262 | 0.94643 | 0.95692 | 0.96304 | 0.96807 | 0.97135 | 0.97407 | 0.94379
1 0.87253 | 0.90965 | 0.93285 | 0.94621 | 0.95746 | 0.9639 | 0.96836 | 0.97204 | 0.97415 | 0.94413
0.001 | 0.87599 | 0.9048 | 0.91254 | 0.9137 | 0.91821 | 0.91297 | 0.91248 | 0.90101 | 0.92356 | 0.90836
0.005 | 0.87161 | 0.91114 | 0.92963 | 0.95183 | 0.96276 | 0.9724 | 0.96779 | 0.96855 | 0.99601 | 0.94797
5 0.025 | 0.87415 | 0.90802 | 0.93787 | 0.95806 | 0.97421 | 0.99114 | 0.98963 | 0.99372 | 1.01696 | 0.96042
medoids_hex 0.1 0.87256 | 0.90962 | 0.93924 | 0.95903 | 0.97358 | 0.98582 | 0.99061 | 1.00165 | 1.00889 | 0.96011
0.5 0.87241 | 0.90926 | 0.9336 | 0.95431 | 0.96789 | 0.97324 | 0.98144 | 0.98792 | 0.99264 | 0.95252
1 0.87253 | 0.90967 | 0.9336 | 0.95326 | 0.96466 | 0.97174 | 0.97838 | 0.98393 | 0.98727 | 0.95056
0.001 | 0.87237 | 0.90039 | 0.90985 | 0.91035 | 0.90605 | 0.90001 | 0.89751 | 0.88634 | 0.86878 | 0.89463
0.005 | 0.87064 | 0.90971 | 0.92739 | 0.93616 | 0.94209 | 0.94104 | 0.94099 | 0.93846 | 0.93088 | 0.92637

5 0.025 | 0.87399 | 0.90777 | 0.93131 | 0.94329 | 0.95006 | 0.95466 | 0.95624 | 0.95948 | 0.95893 | 0.9373
hea-means_hex 0.1 0.87251 | 0.90952 | 0.93274 | 0.94507 | 0.95396 | 0.9586 | 0.96206 | 0.96554 | 0.96752 | 0.94084
0.5 0.87241 | 0.90923 | 0.93298 | 0.94599 | 0.95411 | 0.96007 | 0.96434 | 0.96756 | 0.97008 | 0.94186
1 0.87253 | 0.90965 | 0.93298 | 0.94598 | 0.95437 | 0.96013 | 0.9645 | 0.96799 | 0.97046 | 0.94207
0.001 | 0.87237 | 0.90039 | 0.90941 | 0.90805 | 0.90754 | 0.89947 | 0.89994 | 0.88787 | 0.86891 | 0.89488
0.005 | 0.87064 | 0.90971 | 0.92739 | 0.93623 | 0.94218 | 0.94105 | 0.94036 | 0.93801 | 0.93147 | 0.92634
5 0.025 | 0.87399 | 0.90777 | 0.93131 | 0.94329 | 0.95006 | 0.9547 | 0.95622 | 0.95963 | 0.95902 | 0.93733
lat-means_hex 0.1 0.87251 | 0.90952 | 0.93274 | 0.94507 | 0.95396 | 0.9586 | 0.96205 | 0.96554 | 0.96754 | 0.94084
0.5 0.87241 | 0.90923 | 0.93298 | 0.94599 | 0.95411 | 0.96007 | 0.96434 | 0.96756 | 0.97008 | 0.94186
1 0.87253 | 0.90965 | 0.93298 | 0.94598 | 0.95437 | 0.96013 | 0.9645 | 0.96799 | 0.97046 | 0.94207
0.001 | 0.99991 | 0.99599 | 0.99202 | 0.99301 | 0.99092 | 0.99255 | 0.99367 | 0.99476 | 0.99184 | 0.99385
0.005 1 0.99974 | 0.99605 | 0.99989 | 1.00201 | 1.00158 | 1.00227 | 1.00247 | 1.00577 | 1.00109
5 0.025 1 0.99989 | 0.99836 | 0.99783 | 1.00138 | 1.00305 | 1.00187 | 1.00117 | 1.00222 | 1.00064
means_hex-means 0.1 1 0.99998 | 0.99921 | 0.99973 | 1.00182 | 1.00339 | 1.00299 | 1.00382 | 1.00228 | 1.00147

0.5 1 0.99999 | 0.99961 | 1.00046 | 1.00294 | 1.00309 | 1.00386 | 1.00391 | 1.00411 | 1.002
1 1 0.99999 | 0.99987 | 1.00024 | 1.00323 | 1.00392 | 1.004 | 1.00418 | 1.00381 | 1.00214
0.001 | 1.00416 | 1.0049 | 1.00305 | 1.0038 | 1.01347 | 1.01458 | 1.01659 | 1.01659 | 1.06319 | 1.01559
0.005 | 1.00111 | 1.00157 | 1.00241 | 1.01675 | 1.02197 | 1.03339 | 1.02847 | 1.03206 | 1.06999 | 1.02308
0.025 | 1.00019 | 1.00028 | 1.00705 | 1.01565 | 1.02543 | 1.03822 | 1.03492 | 1.03568 | 1.06052 | 1.02422
medoids_hex-means 0.1 1.00005 | 1.00011 | 1.00697 | 1.01477 | 1.02057 | 1.02839 | 1.02967 | 1.0374 | 1.04277 | 1.02008
0.5 1.00001 | 1.00003 | 1.00066 | 1.00879 | 1.01444 | 1.01372 | 1.01773 | 1.02104 | 1.02326 | 1.01108
1 1 1.00002 | 1.00067 | 1.00769 | 1.01078 | 1.0121 | 1.01439 | 1.01647 | 1.01733 | 1.00883
0.001 | 0.99991 | 0.99599 | 0.9925 | 0.99553 | 0.98932 | 0.99326 | 0.991 | 0.99303 | 0.99163 | 0.99357
0.005 1 0.99974 | 0.99605 | 0.99981 | 1.00191 | 1.00157 | 1.00295 | 1.00296 | 1.00514 | 1.00112
0.025 1 0.99989 | 0.99836 | 0.99783 | 1.00137 | 1.00301 | 1.00189 | 1.00102 | 1.00213 | 1.00061
means_lat-means 0.1 1 0.99998 | 0.99921 | 0.99973 | 1.00182 | 1.0034 1.003 | 1.00381 | 1.00226 | 1.00147

0.5 1 0.99998 | 0.99961 | 1.00046 | 1.00294 | 1.00309 | 1.00386 | 1.00391 | 1.00411 | 1.002
1 1 0.99999 | 0.99987 | 1.00024 | 1.00323 | 1.00392 | 1.004 | 1.00418 | 1.00381 | 1.00214
0.001 | 1.00416 | 1.00491 | 1.00355 | 1.00632 | 1.01182 | 1.01531 | 1.01389 | 1.01483 | 1.06299 | 1.01531
0.005 | 1.00111 | 1.00157 | 1.00241 | 1.01668 | 1.02186 | 1.03338 | 1.02916 | 1.03256 | 1.06931 | 1.02312
0.025 | 1.00019 | 1.00028 | 1.00705 | 1.01565 | 1.02542 | 1.03818 | 1.03495 | 1.03553 | 1.06043 | 1.02419
medoids_lat-means 0.1 1.00005 | 1.00011 | 1.00697 | 1.01477 | 1.02057 | 1.02839 | 1.02968 | 1.03739 | 1.04274 | 1.02008
0.5 1.00001 | 1.00003 | 1.00066 | 1.00879 | 1.01444 | 1.01372 | 1.01773 | 1.02104 | 1.02326 | 1.01108
1 1 1.00002 | 1.00067 | 1.00769 | 1.01078 | 1.0121 | 1.01439 | 1.01647 | 1.01732 | 1.00883
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TABLE II
ACCURACY GAINS (27)—(34)
M
N, ,pr(r)lillllltlson 2 3 4 5 6 7 8 9 10 Average
0.001 | 0.94424 | 0.95172 | 0.94652 | 0.94344 | 0.94043 | 0.93276 | 0.93223 | 0.9231 | 0.91157 | 0.93622
0.005 | 0.94511 | 0.9594 | 0.96375 | 0.96774 | 0.9696 | 0.96723 | 0.9663 | 0.96353 | 0.9605 | 0.96257
0.025 | 0.94649 | 0.95868 | 0.96825 | 0.97237 | 0.97638 | 0.97868 | 0.97804 | 0.9789 | 0.978 | 0.97064
Pmeans_hex 0.1 0.94549 | 0.95991 | 0.96929 | 0.97482 | 0.97962 | 0.98185 | 0.98298 | 0.98471 | 0.98464 | 0.9737
0.5 0.94553 | 0.9598 | 0.96986 | 0.97594 | 0.98027 | 0.98303 | 0.9851 | 0.98656 | 0.98778 | 0.97487
1 0.9456 | 0.96005 | 0.96995 | 0.97577 | 0.98059 | 0.98337 | 0.98538 | 0.98706 | 0.98792 | 0.97508
0.001 | 0.94523 | 0.95311 | 0.94765 | 0.9402 | 0.93657 | 0.92516 | 0.91886 | 0.90556 | 0.90505 | 0.93082
0.005 | 0.94534 | 0.9598 | 0.96584 | 0.97399 | 0.97591 | 0.97833 | 0.97406 | 0.97171 | 0.98132 | 0.96959
0.025 | 0.94656 | 0.95879 | 0.97159 | 0.97912 | 0.98554 | 0.99256 | 0.9912 | 0.99228 | 1.00084 | 0.97983
Pedoids_hex 0.1 0.9455 | 0.95997 | 0.97233 | 0.98038 | 0.98684 | 0.99164 | 0.99331 | 0.99796 | 1.00049 | 0.98094
0.5 0.94554 | 0.95983 | 0.97028 | 0.97906 | 0.98453 | 0.98698 | 0.99042 | 0.993 | 0.99511 | 0.9783
1 0.94561 | 0.96007 | 0.97027 | 0.97853 | 0.98341 | 0.98643 | 0.98924 | 0.99162 | 0.99302 | 0.97758
0.001 | 0.94434 | 0.95467 | 0.95503 | 0.95366 | 0.95075 | 0.94681 | 0.9459 | 0.9391 | 0.9287 | 0.94655
0.005 | 0.94513 | 0.95969 | 0.96648 | 0.96986 | 0.97196 | 0.97064 | 0.97021 | 0.96783 | 0.96323 | 0.965
0.025 | 0.9465 | 0.95883 | 0.96932 | 0.9739 | 0.97676 | 0.97893 | 0.97902 | 0.98069 | 0.97959 | 0.9715
Phexmeans_hex 0.1 0.94549 | 0.95994 | 0.96981 | 0.97518 | 0.97919 | 0.9812 | 0.98256 | 0.98406 | 0.98489 | 0.97359
0.5 0.94553 | 0.95981 | 0.97007 | 0.9758 | 0.97935 | 0.98209 | 0.98398 | 0.98544 | 0.98652 | 0.97429
1 0.9456 | 0.96005 | 0.97003 | 0.97577 | 0.97953 | 0.98208 | 0.98407 | 0.98567 | 0.98672 | 0.97439
0.001 | 0.94434 | 0.95465 | 0.95468 | 0.95221 | 0.95169 | 0.94645 | 0.94734 | 0.94 | 0.92883 | 0.94669
0.005 | 0.94513 | 0.95969 | 0.96648 | 0.96986 | 0.9719 | 0.97064 | 0.96982 | 0.96763 | 0.96362 | 0.96498
0.025 | 0.9465 | 0.95883 | 0.96932 | 0.9739 | 0.97677 | 0.97895 | 0.97901 | 0.98075 | 0.97966 | 0.97152
Pratmeans_hex 0.1 0.94549 | 0.95994 | 0.96981 | 0.97518 | 0.97919 | 0.9812 | 0.98255 | 0.98406 | 0.98491 | 0.97359
0.5 0.94553 | 0.95981 | 0.97007 | 0.9758 | 0.97935 | 0.98209 | 0.98398 | 0.98544 | 0.98652 | 0.97429
1 0.9456 | 0.96005 | 0.97003 | 0.97577 | 0.97953 | 0.98208 | 0.98407 | 0.98567 | 0.98672 | 0.97439
0.001 0.9999 | 0.99692 | 0.99112 | 0.98933 | 0.98914 | 0.98524 | 0.98552 | 0.98298 | 0.98161 | 0.98909
0.005 | 0.99998 | 0.99969 | 0.99718 | 0.99782 | 0.99757 | 0.9965 | 0.99597 | 0.99556 | 0.99716 | 0.99749
0.025 1 0.99984 | 0.99889 | 0.99843 | 0.9996 | 0.99974 | 0.999 | 0.99817 | 0.99838 | 0.99912
Prcans_hexmeans 0.1 1 0.99997 | 0.99946 | 0.99964 | 1.00044 | 1.00066 | 1.00042 | 1.00067 | 0.99974 | 1.00011
0.5 1 0.99999 | 0.99979 | 1.00013 | 1.00094 | 1.00096 | 1.00114 | 1.00113 | 1.00128 | 1.0006
1 1 0.99999 | 0.99991 1 1.00109 | 1.00132 | 1.00133 | 1.00141 | 1.00122 | 1.0007
0.001 | 1.00094 | 0.99836 | 0.9923 | 0.9859 | 0.9851 | 0.97719 | 0.97137 | 0.9643 | 0.97458 | 0.98334
0.005 | 1.00022 | 1.00011 | 0.99934 | 1.00426 | 1.00407 | 1.00795 | 1.00396 | 1.00401 | 1.01878 | 1.00475
0.025 | 1.00007 | 0.99995 | 1.00234 | 1.00536 | 1.00898 | 1.01392 | 1.01245 | 1.01182 | 1.02169 | 1.00851
Pedoids hexmeans 0.1 1.00001 | 1.00003 | 1.0026 | 1.00534 | 1.00782 | 1.01064 | 1.01094 | 1.01413 | 1.01583 | 1.00748
0.5 1 1.00001 | 1.00022 | 1.00333 | 1.00529 | 1.00498 | 1.00654 | 1.00767 | 1.00871 | 1.00408
1 1 1.00001 | 1.00024 | 1.00283 | 1.00396 | 1.00443 | 1.00526 | 1.00603 | 1.00638 | 1.00324
0.001 0.9999 | 0.99694 | 0.99149 | 0.99085 | 0.98816 | 0.98566 | 0.98403 | 0.98203 | 0.98146 | 0.98895
0.005 | 0.99998 | 0.99969 | 0.99718 | 0.99781 | 0.99764 | 0.9965 | 0.99637 | 0.99577 | 0.99676 | 0.99752
0.025 1 0.99984 | 0.9989 | 0.99842 | 0.9996 | 0.99973 | 0.99901 | 0.99811 | 0.9983 | 0.9991
Prcans atmeans 0.1 1 0.99997 | 0.99946 | 0.99964 | 1.00044 | 1.00067 | 1.00043 | 1.00066 | 0.99972 | 1.00011
0.5 1 0.99999 | 0.99979 | 1.00013 | 1.00094 | 1.00096 | 1.00113 | 1.00113 | 1.00128 | 1.0006
1 1 0.99999 | 0.99991 1 1.00109 | 1.00132 | 1.00133 | 1.00141 | 1.00121 | 1.0007
0.001 | 1.00094 | 0.99839 | 0.99267 | 0.98741 | 0.98413 | 0.9776 | 0.96991 | 0.96337 | 0.97444 | 0.98321
0.005 | 1.00022 | 1.00011 | 0.99934 | 1.00425 | 1.00413 | 1.00795 | 1.00437 | 1.00422 | 1.01837 | 1.00477
0.025 | 1.00007 | 0.99995 | 1.00234 | 1.00536 | 1.00898 | 1.01391 | 1.01246 | 1.01176 | 1.02162 | 1.00849
Pnedoids tar-means 0.1 1.00001 | 1.00003 | 1.0026 | 1.00534 | 1.00782 | 1.01064 | 1.01095 | 1.01412 | 1.01582 | 1.00748
0.5 1 1.00001 | 1.00022 | 1.00333 | 1.00529 | 1.00498 | 1.00654 | 1.00767 | 1.00871 | 1.00408
1 1 1.00001 | 1.00024 | 1.00283 | 1.00396 | 1.00443 | 1.00526 | 1.00603 | 1.00638 | 1.00324
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TABLE III
SPEEDUP GAINS (35)—(42)
M

N, million| 3 4 5 6 7 8 9 10 | Average

points
0.001 | 1.89969 | 4.51871 | 3.8618 | 3.14053 | 2.53084 | 2.60107 | 2.32278 | 2.09121 | 1.74674 | 2.74593
0.005 | 3.07082 | 5.99538 | 8.06446 | 8.47069 | 7.94407 | 7.4883 | 7.05027 | 6.30224 | 6.11294 | 6.72213
. 0.025 | 2.83038 |10.73231 | 17.09562 | 22.7483 |24.39278 | 25.33783 | 26.55466 | 25.6101 | 25.02445 | 20.03627
means_hex 0.1 3.39836 | 15.17621 | 22.39912 | 275.0207 | 33.60841 | 38.14042 | 42.23587 | 44.42325 | 45.36001 | 57.75137
0.5 448159 | 19.628 |25.38836 | 31.7869 |35.89336 | 40.18278 | 45.0587 | 47.32611 | 49.02283 | 33.19652
1 4.65057 |20.39352 | 26.28289 | 31.62051 | 36.86083 | 39.6733 | 43.1334 | 47.45195 | 50.11196 | 33.35321
0.001 | 6.79874 |24.01548 | 28.88107 | 25.17684 | 21.62531 | 17.74281 | 18.57348 | 18.30023 | 10.22864 | 19.03807
0.005 | 21.3437 |45.25801 | 46.32436 | 41.37876 | 32.49575 | 25.31083 | 29.04275 | 31.42211 | 20.56455 | 32.5712
_ 0.025 |30.15302 | 66.43556 | 63.5175 | 61.66577 | 58.57642 | 48.01696 | 55.46062 | 61.73672 | 38.83504 | 53.82196
medoids_hex 0.1 43.39594 | 88.99055 | 79.79207 | 77.18132 | 75.142 |66.64599 | 76.65757 | 56.6734 | 52.05424 | 68.50368
0.5 112.2538 | 195.0321 | 167.1596 | 141.9144 | 124.525 | 119.8729 | 104.5019 | 88.00489 | 86.48418 | 126.6387
1 194.2616 | 334.2102 | 306.3857 | 264.2169 | 238.4299 | 208.6688 | 167.8638 | 159.8016 | 164.5271 | 226.4851
0.001 | 2.53426 | 3.7887 | 3.46011 | 2.81387 | 2.36629 | 2.30662 | 2.03392 | 1.87765 | 1.69367 | 2.54168
0.005 | 3.46014 | 5.5992 | 5.46725 | 5.25466 | 5.02206 | 5.37465 | 4.86463 | 4.37067 | 4.81849 | 4.91464
: 0.025 | 3.46085 |10.01829 | 11.39397 | 12.51954 | 13.16258 | 14.1084 | 15.52732 | 14.21198 | 16.29125 | 12.29935
ox-means_hex 0.1 3.82899 | 15.65819 | 14.22204 | 16.29222 | 18.86183 | 20.70084 | 27.09107 | 27.85902 | 28.44096 | 19.21724
0.5 5.01383 [20.91567 | 19.12489 | 21.94877 | 30.48905 | 32.5675 | 35.84348 | 37.80291 | 40.1673 |27.09704
1 5.2249 |21.39962 |20.59938 | 23.7617 | 35.94803 | 34.93683 | 39.20157 | 57.66443 | 45.04419 | 31.53118
0.001 | 2.57571 | 4.06739 | 3.46465 | 2.90213 | 2.38556 | 2.33816 | 2.11076 | 1.94047 | 1.83962 | 2.62494
0.005 | 3.47949 | 5.57614 | 5.51818 | 5.15354 | 5.12227 | 5.55867 | 5.25433 | 4.66409 | 5.06068 | 5.04304
. 0.025 | 3.54948 |10.13742 | 11.65303 | 12.89796 | 13.71983 | 14.19443 | 16.24564 | 14.5464 | 17.14895 | 12.67702
lat-means_hex 0.1 3.98975 | 15.79031 | 14.43418 | 16.473 |19.66281 | 21.25765 | 27.71476 | 28.00613 | 29.02658 | 19.59502
0.5 5.17917 |20.98249 | 19.26278 | 22.73203 | 30.6513 | 33.13446 | 36.18929 | 37.76809 | 40.49365 | 27.37703
1 5.39525 |21.43099 | 20.76754 | 24.06075 | 36.16675 | 35.14111 | 39.35985 | 44.07382 | 45.29909 | 30.18835
0.001 | 0.72309 | 1.21397 | 1.14368 | 1.11789 | 1.06955 | 1.12478 | 1.14435 | 1.11224 | 0.99564 | 1.07169
0.005 | 0.88729 | 1.148 | 1.52381 | 1.6568 | 1.63136 | 1.44317 | 1.46536 | 1.45097 | 1.28426 | 1.38789
. 0.025 0.8186 | 1.14556 | 1.58974 | 1.92351 | 1.91008 | 1.86975 | 1.79397 | 1.85347 | 1.57862 | 1.60926
means_hex-means 0.1 0.89038 | 1.0259 | 1.6231 |11.61969 | 1.86131 | 1.88568 | 1.63353 | 1.62196 | 1.63377 | 2.64392
0.5 0.89713 | 0.93995 | 1.35962 | 1.47975 | 1.19359 | 1.24606 | 1.28281 | 1.26519 | 1.23307 | 1.2108
1 0.89112 | 0.9531 | 1.30007 | 1.34984 | 1.02715 | 1.14121 | 1.10468 | 1.04286 | 1.11518 | 1.1028
0.001 | 2.60284 | 6.37981 | 8.46326 | 8.93119 | 9.08095 | 7.69491 | 9.14442 | 9.74432 | 5.841 | 7.54252
0.005 | 6.21533 | 8.58658 | 8.79328 | 8.12356 | 6.65488 | 4.85986 | 6.02661 | 7.22491 | 4.33098 | 6.75733
_ 0.025 | 8.76251 | 7.1972 | 5.89564 | 5.23667 | 4.58038 | 3.54484 | 3.77408 | 4.46051 | 2.44956 | 5.10015
medoids_hex-means 0.1 11.40316 | 6.01063 | 5.78297 | 4.88757 | 4.15655 | 3.29363 | 2.96486 | 2.06773 | 1.87568 | 4.71586
0.5 22.4827 | 9.34815 | 8.94631 | 6.60174 | 4.14298 | 3.72474 | 2.97167 | 2.35049 | 2.17492 | 6.97152
1 37.5249 | 15.62051 | 15.10354 | 11.30547 | 6.64085 | 5.99947 | 4.30447 | 3.50984 | 3.58935 | 11.51093
0.001 | 0.70982 | 1.14945 | 1.13252 | 1.08614 | 1.06121 | 1.11615 | 1.10475 | 1.07716 | 0.94256 | 1.0422
0.005 | 0.88286 | 1.15964 | 1.51106 | 1.67444 | 1.58983 | 1.39739 | 1.36503 | 1.35423 | 1.22488 | 1.35104
. 0.025 | 0.80012 | 1.13085 | 1.54822 | 1.85723 | 1.84822 | 1.85991 | 1.69553 | 1.80807 | 1.48195 | 1.5589
means_lat-means 0.1 0.85645 | 1.01352 | 1.5967 |11.62528 | 1.78395 | 1.8372 | 1.59534 | 1.61189 | 1.59773 | 2.61312
0.5 0.86812 | 0.93659 | 1.35226 | 1.4302 | 1.18631 | 1.22319 | 1.26792 | 1.26721 | 1.22365 | 1.19505
1 0.8628 | 0.95168 | 1.29029 | 1.33238 | 1.02116 | 1.1355 | 1.10259 | 1.07984 | 1.10868 | 1.09832
0.001 | 2.55541 | 6.04582 | 8.35436 | 8.62979 | 8.99902 | 7.54891 | 8.77657 | 9.37748 | 5.5099 | 7.31081
0.005 | 6.14294 | 8.65327 | 8.68726 | 8.18229 | 6.47111 | 4.70817 | 5.6051 | 6.74438 | 4.12342 | 6.59088
. 0.025 | 8.54166 | 7.10218 | 5.73942 | 5.05257 | 4.42638 | 3.53021 | 3.56785 | 4.34768 | 2.30023 | 4.95646
medoids_lat-means 0.1 10.95723 | 5.93942 | 5.68942 | 4.81713 | 3.98601 | 3.2075 | 2.89574 | 2.05418 | 1.83524 | 4.59799
0.5 21.75165| 9.31317 | 8.8971 | 6.38284 | 4.1192 | 3.65536 | 2.93805 | 2.3543 | 2.15846 | 6.84113
1 36.32102 | 15.59706 | 15.0017 | 11.15559 | 6.60284 | 5.96848 | 4.29965 | 3.63631 | 3.56574 | 11.34982
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There is another important inference from Tables I and II. As
the number of lattice cells is increased, both hexagon-based -
means and lattice-based k-means increase their accuracy gains.
This quasi-regularity is absent for the speedup gain. Table III
shows that the top speedup gain is achieved at about 5 to 7
lattice cells along an axis.

The instance with the almost 7 % accuracy gain achieved at
5000 points by the 10x10 lattice for hexagon-based k-means
versus k-medoids corresponds to an accuracy gain of 1.878 %
in Table II. Here, the hexagon-based k-means approach has
performed about 4.33 times faster than k-medoids. However,
from comparing accuracy gains in both Tables I and II it is
inferred that £-medoids on average has performed worse than &-
means. On average

6 means_hex-means

3

<3 (43)

(44)

medoids_hex-means >

<d

means_lat-means

medoids_lat-means >

7x7 lattice

lattice-based k-means

(45)
(46)

P means_hex-means < pmedoids_hex-means 2

P means_lat-means < pmedoids_lat-means 2

although inequalities (45) and (46) do not hold at 1000 points,
while inequalities (43) and (44) turn into equalities for the case
of a million points by using the 2x2 lattice (the respective
accuracy gain is just 1, i.e., a couple of compared methods
perform with the same accuracy). Therefore, it is correct to
compare both hexagon-based k-means and lattice-based k-
means to only k-means.

Tables I and II also show that hexagon-based k-means and
lattice-based k-means perform at almost the same accuracy rate.
Besides, according to Table III, hexagon-based k-means is by
0.41 to 3.23 % faster than lattice-based k-means (it is 1.85 %
for the example in Fig. 3). Therefore, it is reasonable to make
further conclusions on just the hexagon-based k-means
approach.

k-means

hexagon-based k-means

Fig. 3. The four results of partitioning a dense cloud of 125 thousand points into 49 clusters. While applying the hexagonal cell 7x7 lattice singly is at least 30 times
faster than k-means, it is 3.72 % less accurate by the squared-Euclidean-distance metric and 1.72 % less accurate by the regular-Euclidean-distance metric. The
hexagon-based k-means approach is respectively 0.41 % and 0.14 % more accurate by these metrics than k-means. Besides, it is 1.85 % faster than lattice-based k-
means (the visual difference is hardly noticeable) and is slightly more accurate than the latter (the difference in their gains is of order of 1077 to 10°.

37



Electrical, Control and Communication Engineering

2023, vol. 19, no. 1

VII. DISCUSSION

A hexagonal cell lattice singly, without further A-means
clustering, is 1.4 to 9 % less accurate (by the regular-Euclidean-
distance metric; see Table I1); it is an extremely fast method to
determine an upper bound of the clustering quality gap. The
lattice speedup grows as the number of lattice cells along an
axis is increased (see the upper two grey stripes in Table III). It
is 42 to 50 times versus the k-means approach for 0.1 million
points and greater by no fewer than 8 lattice cells along an axis
(see the top grey stripe in Table III).

Furthermore, if 0.1 million points and greater are partitioned
into at least a few tens of clusters, the hexagonal-pattern-based
clustering is just 1.4 to 1.8 % less accurate (in regular Euclidean
distances) than the hexagon-based k-means approach (see
Table II). Nevertheless, the hexagonal-pattern-based clustering
is at least 20 times faster for such instances.

Why is hexagon-based k-means by 0.41 to 3.23 % faster than
lattice-based k-means (on average, it is 2.2 % faster)? A
plausible explanation is because the centroids by hexagon-
based k-means are located better than the cell centres by lattice-
based k-means, so the latter k-means takes more steps to
converge. Why does the hexagonal pattern improve clustering,
after all? Generally speaking, the hexagonal structure is optimal
for a planar square region. Therefore, as the density of points
increases, the best clustering result tends to have a hexagonal
structure, and thus applying the respective hexagonal cell lattice
speeds up the convergence.

It is quite obvious that the suggested approach is easily
applicable to practical problems dealing with clustering. The
hexagonal cell lattice is quickly formed as a two-dimensional
array. Creating set (6) as a cluster that is a hexagon enclosing
points is a standard computational procedure. While we do not
overestimate the significance of our approach, it is a specific
supplement to the theory and practice of centroid-based
clustering that makes a small yet reasonable and valuable step
forward.

VIII. CONCLUSION

We have suggested a hexagonal-pattern-based approach to
partition flat nodes into clusters quicker than the k-means
algorithm and its modifications do. Our method consists of two
steps. First, we apply a hexagonal cell lattice to nodes to
approximately determine centroids of the clusters. Second, the
centroids are used as initial centroids to start the k-means
algorithm. Based on the simulation results, we have ascertained
that the suggested method is efficient for centroid-based
clustering of dense nearly-square point clouds of 0.1 million
points and greater by using no fewer than 6 lattice cells along
an axis. Compared to k-means, our method is at least 10 %
faster and it is about 0.01 to 0.07 % more accurate in regular
Euclidean distances. In squared Euclidean distances, the
accuracy gain is 0.14 to 0.21 %.

In addition, an upper bound of the clustering quality gap is
determined the fastest by directly applying a hexagonal cell
lattice of the respective size. The upper bound estimation is
important to efficiently proceed with a more accurate method.

Besides, when the number of clusters is to be optimized, the
upper bound can used as a variable of the optimization. We
expect that the optimal number of clusters would correspond to
the minimum of the upper bound.

Obviously, distinct limitations exist here. First, the lattice
size must be compatible with the number of clusters. Second,
the cloud of points must not much vary in density and be of
nearly-square shape. The first limitation can be almost removed
by applying a bigger-sized lattice to cover the point cloud so
that the required number of lattice cells would be formed. Some
empty lattice cells at boundaries of the cloud do not matter and
are ignored. The second limitation, however, is not removable.

Our contribution comes into the optimized centroid-based
clustering of flat objects, which is practically important to
efficiently solve the respective metric facility location problem.
We believe it is possible that the hexagonal-pattern-based
approach can be successfully applied to clustering objects with
a greater number of features. The efficiency for such cases is
yet to be studied separately.
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