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Abstract. The optimal power dispatch problem in the power 
system is looked out in the given work. The mathematical model 
of power system optimal regime searching approach in the 
market conditions in accordance with Pareto principle is 
described. The theoretical layout is illustrated on a real power 
system model of the united power system, which consists of 17 
nodes and 21 lines. The procedure is realized using the GAMS 
software. 
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I. INTRODUCTION 

The problem of power system operation under market 
conditions and competition is very important at the present 
time.  

There is looked out the model of power system in free 
prices on electricity below. Each node is represented by 
station or group of stations. The aim of the whole system is to 
cover the given energy demand, and the aim of each node is to 
minimize expanses caused by energy generation. These two 
aims can lead to different levels of energy generation at each 
node. Two concepts are used to reflect optimal behavior of the 
whole system and every node [1] – [3]. Optimization 
calculations are performed using the Pareto principle. 

II. THE MATHEMATICAL MODEL  

It is assumed that the power system contains n nodes, some 
of them are connected. In every node i could be generation xi  
and demand Pi. Variable Pi is bounded from above by value 

.ix  The node cost function’s form [1] is  

( ) .,1,2 nixxxC iiiiiii =++= γβα         (1) 

Generations xi and flows yij must satisfy the first Kirchhoff 
law: 
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where Pi – the load at the node i. 
Elements aij of the connection matrix A are given by 
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Variables yij and cij mean the energy flow from node i to 
node j and energy price, associated with the flow yij. Constants 

ijπ  are loses coefficients  
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where ijδ  – phase displacment angles between voltage vectors 

iU  and jU ; 
Rij – active resistance of line between nodes i and j. 

I.e. value ijij yπ  gives the part of the flow yij, which was lost 
during transmission from node i to node j. 

 The total expenses can be expressed in the following form 
[4]: 
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   (3) 

The first term of (3) gives the expenses, caused by 
generation of xi units of energy. The second term gives the 
profit from the sold energy. The third term in (3) discloses 
expenses connected with the bought energy. In this work is 
assumed that expenses, corresponding to loses of energy, are 
equally separated by seller and buyer. This is the reason of 
appearance of the forth and fifth terms in the expression (3). 

For the mathematical model of power system is assumed 
that the following inequality is true 

,,1, nixP ii =≤                    (4) 

where ix  – the maximal power of the power plant. 
The main problem is formulated as the following 

multicriteria optimization problem [4]: 

( ) min,,,, 111111
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if nodes i and j are connected, 

otherwise. 
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,,1,,0 njiyy jiij ==           (7) 

,,1,,)()( njiyxCycyxC ijjjijijijii =′≤≤′         (8) 

,,1,0 nixx ii =≤≤       (9) 

.,1,0 niyy ijij =≤≤             (10) 

Constraint (7) forbids simultaneous flows in opposite 
directions at the same line. The value iy  defines the maximum 
available flow between nodes i and j.  

Energy transmission from the node i to j is suitable for both 
nodes if the price cij satisfy the inequality 

).()( jjijii xCcxC ′≤≤′       (11) 

Problem (5-10) is a difficult mathematical programming 
multicriteria problem. Moreover, in this problem prices cij are 
variables. Hence, as soon as we have terms ijij yc  we meet 
bilinearity that complicates the problem from the optimization 
point of view. In general, bilinearity leads to multiextremality 
– solution with many local optima. Other sources of bilinearity 
are constraints (7) and (8). In such case, to overcome the 
bilinearity, a global optimization approach can be used.  

III.  PARETO OPTIMALITY CONSIDERATION IN THE OBJECTIVE 

FUNCTION 

A strategy vector 

( )pnpp xxx ,,1
K=  

is said to be Pareto optimal if there are no other strategy 
vectors ( ) Xxxx n ∈= ,,1

K  such that 

nixfxf p
ii ,1),()( =≤  

and 

)()( p
kk xfxf <  

for some { }nk ,,2,1 K∈  [2]. 
If we take constraints nii ,1,0 =>µ  (constants iµ  are 

weights or importance of each loss function) and solve the 
problem 

Xxxf
n

i
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then the obtained optimal solution is a Pareto optimal solution. 
In our settings every node is a player. We suggest to 

consider the generation xi of node i, energy flows yij  from node 
i to neighbor nodes and associated prices cij as the strategy of 

node i. In order to find a Pareto optimal solution function (12) 
subject to constraints (6-10) should be minimized. From this 
point of view we have from (3) that the loss functions in the 
model are also separable. Then from (12) the following 
function could be obtained: 
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Minimization of function (13) can be interpreted as follows. 
In the objective function (13) the first term (total costs) and 
the third term (expenses of total loses) are minimized, while 
the second term (expenses of total transmission) due to minus 
before the term is maximized.  

The considered mathematical programming problems for 
finding the Pareto optimal solutions are nonconvex and, 
hence, van has many local optima. In order to find the global 
optimum optimization technique is used [5]. This technique is 
based on the general branch and bound scheme, when 
multiextremal problem is approximated by a sequence of 
convex or one-extreme problems.  

IV.  EXAMPLE OF CALCULATIONS 

The optimization model is looked out on the power system 
test scheme. The scheme represents real integrated power 
system of Latvia, Estonia, Russia and Lithuania (Fig.1). In the 
given scheme Latvian power system is represented by ten 
substations, Estonian power system by three substations, but 
part of the Russian power system – by three substations. 
Power generators connected to buses of the net are shown as 
red cycles. The power system of Lithuania is represented by 
equivalent power in the node LIKSNA. Such approach of 
nodal power system model representation provides 
correspondence of regime parameters to the whole integrated 
power system in the field of research and facilitates analysis of 
regimes. Lines’ active resistances are shown on the Fig. 1. The 
rated voltage of the net is .330 kVU n =  Active power 
generation limits on power plants are:  

;1200200 MWPEesti ≤≤  

;765200 MWPBalti ≤≤  

;400100 . MWP HPPR ≤≤  

MWP HPPPl 865100 . ≤≤ . 

Power lines’ carrying capacity was limited on 300 MW. Reactive 
power flows and power system elements’ reactive resistances are 
not taken into account during the calculations. 

There was modeled the given regime of the model during 
the first stage. Normal active power dispatch is shown on the 
Fig. 1. The regime was coded using General Algebraic 
Modeling System (GAMS) language. GAMS is a high level 
language for developing mathematical models with concise 
algebraic statements. It makes use of relational database 
theory and mathematical programming and further merges 
them to suit need of mathematical modelers. Apart from a 
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Fig. 1. Real power system model 

 

wide variety of optimization problems, it can handle 
simultaneous linear and non-linear equation systems [6, 7]. 

Power supply cost characteristics are accepted as follows: 

200025.014.0200 EestiEestiEesti PPC ⋅+⋅+= ; 

20003.023.0200 BaltiBaltiBalti PPC ⋅+⋅+= . 

20009.012.0100 RHPPRHPPRHPP PPC ⋅+⋅+= ; 

200065.011.0100 PLHPPPLHPPPLHPP PPC ⋅+⋅+= . 

Marginal price in the nodes ic  of the power system are 
gotten as the first derivative from aggregate cost 
characteristics: 

( )iii PCc ′= , 

where i – power supply (in our model those nodes are Eesti, 
Balti, RHPP, Pl.HPP). 

For nods with power transit marginal prices were accepted at 
the level: 0.35 for the node Liksna, 0.4 for nodes Velikorec 
and Kingis. 

During the calculations of marginal prices for nodes without 
generating sources it was established that marginal price in the 
node increases by 1% as to the nearest node with power 
generation for every 1Ω of line’s resistance in the direction of 
power flow. Nodal marginal prices are displayed on Fig. 1. 

It was assumed that all nodes have equal importance, i.e. 
weight coefficients are 1=iµ . The Pareto problem according 
to (13) was modeled in GAMS software. Solving the Pareto 
problem optimal economic dispatch that is shown on the Fig. 2 
was gotten. 

From the gotten results we can see that after power system 
mode optimization in accordance with Pareto principle in the 
market conditions the generation and power flows in the 
system have changed. For all to see, before mode optimization 
marginal prices in some nodes of the power system are grater, 
than power flow prices from those nodes. That’s why nodes 
with higher nodal prices than power flows’ prices in direction 
to nodes, are interested in price increase. After regime 
optimization marginal prices in generation nodes became 
equal and prices of power flows in the network satisfy the 
inequality (11). 
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Fig. 2. Real power system scheme after modeling 
 

V.  CONCLUSIONS 

Developed algorithm allows observing criteria of total costs 
on generation and loses expenses in the network minimization 
and profit maximization in the efficiency function of 
optimization task. 

The algorithm’s approbation on the 330 kV network of the 
real Baltic power system example at the accepted main power 
plants’ cost characteristics gave proof about its disability. 
 
This work has been supported by the European Social Fund 
within the project „Support for the implementation of doctoral 
studies at Riga Technical University”. 
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