Improving Legibility of Motor Current Spectrum for Broken Rotor Bars Fault Diagnostics

Authors

  • Bilal Asad Tallinn University of Technology
  • Toomas Vaimann Tallinn University of Technology
  • Ants Kallaste Tallinn University of Technology
  • Anton Rassõlkin Tallinn University of Technology
  • Anouar Belahcen Aalto University
  • M. Naveed Iqbal Tallinn University of Technology

DOI:

https://doi.org/10.2478/ecce-2019-0001

Keywords:

Digital filters, Fault diagnosis, Fourier transform, Induction motors

Abstract

In this paper, the harmonic contribution of the broken rotor bar of an induction machine is investigated using an effective combination of the fast Fourier transform (FFT) and a band stop filter. The winding, spatial, grid fed and fault-based harmonics are investigated. Since the fundamental component is the most powerful component as compared to the other frequencies, it decreases the legibility of spectrum, making logarithmic scale inevitable. It also remains a potential threat of burying the fault representative side band frequencies because of its spectral leakage. In this paper, a band stop Chebyshev filter is used to attenuate the fundamental component, which makes the spectrum clearer and easier to understand even on the linear scale. Its good transition band and low passband ripples make it suitable for attenuating the main supply frequency with low impact on the neighbouring side band frequencies. To study the impact of fault on magnetic flux distribution, simulation is done using finite element method with good number of mesh elements and very small step size. The line current is calculated and frequency spectrum is investigated to segregate the spatial and fault frequencies using the proposed technique. The results are further validated by implementing the algorithm on the data measured in the laboratory environment including the grid fed harmonics.

References

J. Pyrhönen, T. Jokinen, and V. Hrabovcová, Design of rotating electrical machines. John Wiley & Sons, Inc., Witshire, 2008.

H. W. Penrose, “Test Methods for Determining the Impact of Motor Condition on Motor Efficiency and Reliability,” PhD Diss., vol. ALL-TEST P, no. LLC, Old Saybrook, CT, pp. 1–8.

G. R. Bossio, C. H. De Angelo, J. M. Bossio, C. M. Pezzani, and G. O. Garcia, “Separating Broken Rotor Bars and Load Oscillations on IM Fault Diagnosis Through the Instantaneous Active and Reactive Currents,” IEEE Trans. Ind. Electron., vol. 56, no. 11, pp. 4571–4580, Nov. 2009. https://doi.org/10.1109/TIE.2009.2024656

A. Soualhi, G. Clerc, and H. Razik, “Detection and Diagnosis of Faults in Induction Motor Using an Improved Artificial Ant Clustering Technique,” IEEE Trans. Ind. Electron., vol. 60, no. 9, pp. 4053–4062, Sep. 2013. https://doi.org/10.1109/TIE.2012.2230598

B. Ayhan, H. J. Trussell, Mo-Yuen Chow, and Myung-Hyun Song, “On the Use of a Lower Sampling Rate for Broken Rotor Bar Detection With DTFT and AR-Based Spectrum Methods,” IEEE Trans. Ind. Electron., vol. 55, no. 3, pp. 1421–1434, Mar. 2008. https://doi.org/10.1109/TIE.2007.896522

A. Khezzar, M. Y. Kaikaa, M. El Kamel Oumaamar, M. Boucherma, and H. Razik, “On the Use of Slot Harmonics as a Potential Indicator of Rotor Bar Breakage in the Induction Machine,” IEEE Trans. Ind. Electron., vol. 56, no. 11, pp. 4592–4605, Nov. 2009. https://doi.org/10.1109/TIE.2009.2030819

M. Malekpour, B. T. Phung, and E. Ambikairajah, “Stator current envelope extraction for analysis of broken rotor bar in induction motors,” in 2017 IEEE 11th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED), 2017, pp. 240–246. https://doi.org/10.1109/DEMPED.2017.8062362

A. Belahcen, J. Martinez, and T. Vaimann, “Comprehensive computations of the response of faulty cage induction machines,” in 2014 International Conference on Electrical Machines (ICEM), 2014, pp. 1510–1515. https://doi.org/10.1109/ICELMACH.2014.6960382

S. Nandi, H. A. Toliyat, and X. Li, “Condition Monitoring and Fault Diagnosis of Electrical Motors—A Review,” IEEE Trans. Energy Convers., vol. 20, no. 4, pp. 719–729, Dec. 2005. https://doi.org/10.1109/TEC.2005.847955

B. Asad, T. Vaimann, A. Kallaste, and A. Belahcen, “Harmonic Spectrum Analysis of Induction Motor With Broken Rotor Bar Fault,” in 2018 IEEE 59th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON), 2018, pp. 1–7. https://doi.org/10.1109/RTUCON.2018.8659842

R. Puche-Panadero, M. Pineda-Sanchez, M. Riera-Guasp, J. Roger-Folch, E. Hurtado-Perez, and J. Perez-Cruz, “Improved Resolution of the MCSA Method Via Hilbert Transform, Enabling the Diagnosis of Rotor Asymmetries at Very Low Slip,” IEEE Trans. Energy Convers., vol. 24, no. 1, pp. 52–59, Mar. 2009. https://doi.org/10.1109/TEC.2008.2003207

M. Pineda-Sanchez, M. Riera-Guasp, J. A. Antonino-Daviu, J. Roger-Folch, J. Perez-Cruz, and R. Puche-Panadero, “Diagnosis of Induction Motor Faults in the Fractional Fourier Domain,” IEEE Trans. Instrum. Meas., vol. 59, no. 8, pp. 2065–2075, Aug. 2010. https://doi.org/10.1109/TIM.2009.2031835

M. A. Moussa, M. Boucherma, and A. Khezzar, “A Detection Method for Induction Motor Bar Fault Using Sidelobes Leakage Phenomenon of the Sliding Discrete Fourier Transform,” IEEE Trans. Power Electron., vol. 32, no. 7, pp. 5560–5572, Jul. 2017. https://doi.org/10.1109/TPEL.2016.2605821

S. H. Kia, H. Henao, and G.-A. Capolino, “Diagnosis of Broken-Bar Fault in Induction Machines Using Discrete Wavelet Transform Without Slip Estimation,” IEEE Trans. Ind. Appl., vol. 45, no. 4, pp. 1395–1404, Jul. 2009. https://doi.org/10.1109/TIA.2009.2018975

S. Singh and N. Kumar, “Detection of Bearing Faults in Mechanical Systems Using Stator Current Monitoring,” IEEE Trans. Ind. Informatics, vol. 13, no. 3, pp. 1341–1349, Jun. 2017. https://doi.org/10.1109/TII.2016.2641470

M. Kang and J.-M. Kim, “Reliable Fault Diagnosis of Multiple Induction Motor Defects Using a 2-D Representation of Shannon Wavelets,” IEEE Trans. Magn., vol. 50, no. 10, pp. 1–13, Oct. 2014. https://doi.org/10.1109/TMAG.2014.2316474

J. R. Cameron, W. T. Thomson, and A. B. Dow, “Vibration and current monitoring for detecting airgap eccentricity in large induction motors,” IEE Proc. B Electr. Power Appl., vol. 133, no. 3, p. 155, 1986. https://doi.org/10.1049/ip-b.1986.0022

R. R. Schoen and T. G. Habetler, “Effects of time-varying loads on rotor fault detection in induction machines,” IEEE Trans. Ind. Appl., vol. 31, no. 4, pp. 900–906, 1995. https://doi.org/10.1109/28.395302

H. Henao, C. Demian, and G.-A. Capolino, “A frequency-domain detection of stator winding faults in induction machines using an external flux sensor,” IEEE Trans. Ind. Appl., vol. 39, no. 5, pp. 1272–1279, Sep. 2003. https://doi.org/10.1109/TIA.2003.816531

A. Sapena-Bano, J. Burriel-Valencia, M. Pineda-Sanchez, R. Puche-Panadero, and M. Riera-Guasp, “The Harmonic Order Tracking Analysis Method for the Fault Diagnosis in Induction Motors Under Time-Varying Conditions,” IEEE Trans. Energy Convers., vol. 32, no. 1, pp. 244–256, Mar. 2017. https://doi.org/10.1109/TEC.2016.2626008

J. Milimonfared, H. M. Kelk, S. Nandi, A. D. Minassians, and H. A. Toliyat, “A novel approach for broken-rotor-bar detection in cage induction motors,” IEEE Trans. Ind. Appl., vol. 35, no. 5, pp. 1000–1006, 1999. https://doi.org/10.1109/28.793359

N. M. Elkasabgy, A. R. Eastham, and G. E. Dawson, “Detection of broken bars in the cage rotor on an induction machine,” IEEE Trans. Ind. Appl., vol. 28, no. 1, pp. 165–171, 1992. https://doi.org/10.1109/28.120226

Downloads

Published

2019-09-01

How to Cite

Asad, B., Vaimann, T., Kallaste, A., Rassõlkin, A., Belahcen, A., & Iqbal, M. N. (2019). Improving Legibility of Motor Current Spectrum for Broken Rotor Bars Fault Diagnostics. Electrical, Control and Communication Engineering, 15(1), 1-8. https://doi.org/10.2478/ecce-2019-0001