Wireless Sensor Networks: Towards Resilience Against Weather-Based Disruptions

Authors

DOI:

https://doi.org/10.2478/ecce-2019-0011

Keywords:

Computer simulation, Industrial communication, Wireless LAN, Wireless sensor networks

Abstract

The article discusses vulnerability of wireless sensors networks to weather-based disruptions considering the opinions of different experts published in a range of scientific materials. The introduction provides a brief overview of wireless signals in real world conditions focusing on how weather affects signals (rain, fog and clouds, snow, hail, lightning, wind, bodies of water, trees and physical obstruction). Information about the effects of weather on wireless sensor networks using Free Space Optical / Radio Frequency (FSO/RF) communication is then provided. Finally, the impact of weather conditions on MANET routing protocols is considered theoretically, and experimental simulations are performed by comparing the sustainability of different protocols to different weather conditions. After analysis of experiment results, ideas on how to decrease vulnerability of wireless networks to weather-based disruptions are discussed.

References

J. Otero, P. Yalamanchili and H. W. Braun, “High Performance Wireless Networking and Weather”, White paper, University of California at San Diego, 2001.

“VHF/UHF/Microwave Radio Propagation: A Primer for Digital Experimenters”, http://www.tapr.org/tapr/html/ve3jf.dcc97/ve3jf.dcc97.html

G. Brussaard, and P. A. Watson, “Atmospheric Modeling and Millimeter Wave Propagation”. London; New York: Chapman & Hall, 1995.

“Wireless communication lines”, http://www.dom-spravka.info/_mobilla/subscriber/2.htm

W. Siler, “How Weather Affects Your Cell Signal. Using a phone outdoors? This is what you need to know to stay in touch,” 2017. [Online]. https://www.outsideonline.com/2186591/how-weather-affects-your-phones-signal.

O. Bouchet, T. Marquis, M. Chabane, M. Alnaboulsi, and H. Sizun, “FSO and quality of service software prediction”, Proc. Free-Space Laser Communications V, 2005, vol. 5892, pp. 1–12. https://doi.org/10.1117/12.614912

S. Deng, J. Liao, Z. R. Huang, M. Hella, and K. Connor, “Wireless connections of sensor network using RF and free space optical links”, in Proc. Next-Generation Communication and Sensor Networks 2007, 2007, vol. 6773, p. 677307. https://doi.org/10.1117/12.751573

R. L. Olsen, D. V. Rogers, and D. B. Hodge, “The aRb relation in the calculation of rain attenuation”, IEEE Trans. Antennas Propag., 1978, vol. 26, no. 2, pp. 318–329. https://doi.org/10.1109/TAP.1978.1141845

F. Nadeem, E. Leitgeb, O. Koudelka, T. Javornic, and G. Kandus, “Comparing the rain effects on hybrid network using optical wireless and GHz links”, in 4th ICET 2008, Rawalpindi, Pakistan, October 2008, IEEE, pp. 156–161. https://doi.org/10.1109/ICET.2008.4777492

M. Akiba, W. Wakamori, and S. Ito, “Measurements of optical propagation characteristics for free space optical communication during rain fall”, IEICE Trans. Commun. 2004, vol. E87-B, pp. 2053–2056, 2004.

I. Kim, B. McArthur, and E. Korevaar, “Comparison of laser beam propagation at 785 and 1550 nm in fog and haze for opt. wireless communications”, Proc. Optical Wireless Communications III, 2001, vol. 4214, pp. 26–37. https://doi.org/10.1117/12.417512

K. Watabe, M. Akiba, N. Hiromoto, T. Hayashi, K. Wakamori, Y. Takabe, Y. Chigai, and S. Ito, “Characteristics of optical propagation through rain for infrared space communications”, IEICE Trans. Commun., 2003, vol. E86-B, pp. 852–864.

N. Araki, and H. Yashima, “A channel model for optical wireless communication during rainfall”, Proc. 2nd Int. Symposium on Wireless Communication Systems, IEEE 2005, p. 205–209.

M. Akiba, K. Ogawa, K. Walkamori, K. Kodate, and S. Ito, “Measurement and simulation of the effect of snow fall on free space optical propagation”, Applied Optics, 2008, vol. 47, no. 31, pp. 5736–5743. https://doi.org/10.1364/AO.47.005736

S. E. Yuter, D. E. Kingsmill, L. B. Nance, and M. Loffler-Mang, “Observations of precipitation size and fall speed characteristics within coexisting rain and wet snow”, Journal of Applied Meteorology and Climatology, 2006, vol. 45, pp. 1450–1464. https://doi.org/10.1175/JAM2406.1

P. P. Lawson, R. E. Stewart, and L. J. Angus, “Observations and numerical simulations of origin and development of very large snowflakes”, Journal of the Atmospheric Sciences 1998, vol. 55, pp. 3209–3229. https://doi.org/10.1175/1520-0469(1998)055<3209:OANSOT>2.0.CO;2

S. Sheikh Muhammad, P. Kohldorfer, and E. Leitgeb, “Channel Modeling for Terrestrial Free Space Optical Links”, ICTON, 2005.

T. Oomori, and S. Aoyagi, “A presumptive formula for snowfall attenuation of radio waves”, Trons. Inst. Electron. Commun. Eng. Japan (in Japanese), vol. S B, p. 451–458, 1971.

T. Oguchi, “Electromagnetic wave propagation and scattering in rain and other hydrometeors”, Proc. IEEE, Sept. 1983, vol. 71, no. 9. https://doi.org/10.1109/PROC.1983.12724

F. Nadeem, S. Chessa, E. Leitgeb, and S. Zaman, “The effects of weather on the life time of wireless sensor networks using FSO/RF communication”, Radioengineering, vol. 19, no. 2, pp. 262–270, 2010.

M. Al Naboulsi, H. Sizun, and F. de Fornel, “Fog attenuation prediction for optical and infrared waves,” Optical Engineering, 2004, vol. 43, no. 2, pp. 319–329. https://doi.org/10.1117/1.1637611

J. Rangarajan, and K. Baskaran, “Evaluating the Impact of Weather Condition on MANET Routing Protocols”, International Journal on Electrical Engineering and Informatics, vol. 7, no. 3, September 2015. https://doi.org/10.15676/ijeei.2015.7.3.8

D. Navakauskas, and R. Pupeikis, “On-line Approach for Fast Convolution over Sensor Networks,” Tem Journal-Technology Educ. Manag. Informatics, 2018.

P. W. Kruse, “Elements of Infrared Technology: Generation, Transmission and Detection”. New York: J. Wiley and Sons, 1962.

K. Kondratjevs, A. Zabasta, N. Kunicina, and L. Ribickis, “Development of Pseudo Autonomous Wireless Sensor Monitoring System for Water Distribution Network”, Proc. IEEE 23rd International Symposium on Industrial Electronics, Turkey, Istanbul, 1–4 July 2014, pp. 1454–1458. https://doi.org/10.1109/ISIE.2014.6864828

A. Zabasta, V. Dambrauskas, J. Deksnis, V. Deksnis, I. Gudele, K. Kondratjevs, A. Kriaučeliūnas, N. Kuņicina, K. Navalinskaite, A. Nolendorfs, and V. Selmanovs-Pless, Proceeding of the Project (LLIV-312) „Smart Metering”, Engineering Research Institute, Ventspils International Radio Astronomy Centre of Ventspils University College, 2013, pp. 1–110.

A. Zabašta, V. Šeļmanovs-Plešs, and N. Kuņicina, “Wireless Sensor Networks Application at Water Distribution Networks in Latvia”, Proc. 7th International Conference on Electrical and Control Technologies (ECT 2012), Lithuania, Kaunas, 3–4 May, 2012, pp. 40–43.

A. Romanovs, “Security in the Era of Industry 4.0”, Proc. 2017 Open Conference of Electrical, Electronic and Information Sciences (eStream), IEEE, Lithuania, Vilnius, 27 April, 2017. https://doi.org/10.1109/eStream.2017.7950303

A. Zabasta, N. Kunicina, K. Kondratjevs, A. Patļins, and J. Čaiko, “System for Legacy and Smart Municipal Systems Infrastructure control”, EPE’18 ECCE Europe, Latvia, Riga, 2018, p. 6.

T. Sledevic, G. Tamulevicius, and D. Navakauskas, “Upgrading FPGA Implementation of Isolated Word Recognition System for a Real-Time Operation”, Elektronika Ir Elektrotechnika, vol. 19, no. 10, Dec. 2013. https://doi.org/10.5755/j01.eee.19.10.5907

G. Ancans, A. Stafecka, V. Bobrovs, A. Anacans, and J. Caiko, “Analysis of Characteristics and Requirements for 5G Mobile Communication Systems,” Latvian Journal of Physics and Technical Sciences, 2017, vol. 54, no. 4, pp. 69–78. https://doi.org/10.1515/lpts-2017-0028

Downloads

Published

2019-12-01

How to Cite

Skirelis, J., Patlins, A., Kunicina, N., Romanovs, A., & Zabasta, A. (2019). Wireless Sensor Networks: Towards Resilience Against Weather-Based Disruptions. Electrical, Control and Communication Engineering, 15(2), 79-87. https://doi.org/10.2478/ecce-2019-0011