Effectively Tunable Bandpass Waveguide Filter Based on Incorporation of Coupled Cylindrical Resonators Cut in Half

Authors

DOI:

https://doi.org/10.2478/ecce-2020-0012

Keywords:

Bandpass filters, Coupled resonator filters, Dielectric filters, Tuning, Waveguide filters

Abstract

A novel mechanically tunable waveguide dielectric filter is presented in this paper. The resonant structure of the filter is made of a rectangular waveguide cavity and an H-plane dielectric cylinder cut in half. The resonating frequency of the proposed structure can be significantly changed by moving two split cylinder parts. The coupling matrix synthesis technique is used to create the required bandpass filter. A drawback of the proposed structure is that the tuning process invokes a mismatch between the feeding structure and the filter. To overcome this drawback, the tuning screws between the coupling irises are used. A filter with the proposed geometry has a large frequency tuning range as well as relatively constant passband bandwidth.

References

J. S. Hong, M. J. Lancaster, Microstrip Filters for RF/Microwave Applications. New York: John Wiley & Sons, INC, 2001. ttps://doi.org/10.1002/0471221619

R. J. Cameron, C. M. Kudsia, and R. R. Mansour, Microwave Filters for Communication Systems: Fundamentals, Design and Applications (2nd ed.). New Jersy: John Wiley, Sons; Inc. Hoboken, 2018. https://doi.org/10.1002/9781119292371

I. C. Hunter, L. Billonet, B. Jarry, and P. Guillon, “Microwave filters-applications and technology,” IEEE Transactions on Microwave Theory and Techniques, vol. 50, no.3, pp. 794–805, March 2002. https://doi.org/10.1109/22.989963

G. L. Matthaei, L. Young L, and E. M. T. Jones. Microwave filters, impedance-matching networks, and coupling structures. North Belgin, NJ, USA: McGraw-Hill; 1964. https://doi.org/10.21236/AD0402930

S. B. Cohn, “Microwave Bandpass Filters Containing High-Q Dielectric Resonators,” IEEE Transactions on Microwave Theory and Techniques, vol.16, no.4, pp. 218–227, Apr. 1968. https://doi.org/10.1109/TMTT.1968.1126654

B. Yu. Kapilevich. Waveguide Dielectric Filters. USA: Springfield, International Translation Company, NTIS, 1981 (translated from Russian by K. B. Howe, Moskva, Sviaz, 1980).

R. Levy and S. B. Cohn, “A History of Microwave Filter Research, Design, and Development,” IEEE Transactions on Microwave Theory and Techniques, vol. 32, no. 9, pp. 1055–1067, Sep. 1984. https://doi.org/10.1109/TMTT.1984.1132817

J. D. Rhodes, “The generalized direct-coupled cavity linear phase filter,” IEEE Trans. Microwave Theory Tech., vol. 18, no. 6, pp. 308–313, Jun. 1970. https://doi.org/10.1109/TMTT.1970.1127224

A. E. Atia and A. E. Williams, “Narrow-Bandpass Waveguide Filters,” IEEE Transactions on Microwave Theory and Techniques, vol. 20, no.4, pp. 258–265. Apr. 1972. https://doi.org/10.1109/TMTT.1972.1127732

A. E. Atia, A. E. Williams, and R. W. Newcomb, “Narrow-band multiple-coupled cavity synthesis,” IEEE Trans. Circuits Syst., vol. 21, no. 5, pp. 649–655, Sep. 1974. https://doi.org/10.1109/TCS.1974.1083913

R. J. Cameron, “General coupling matrix synthesis methods for Chebyshev filtering functions,” IEEE Trans. Microwave Theory Tech., vol. 47, no. 4, pp. 433–442, Apr. 1999. https://doi.org/10.1109/22.754877

R. J. Cameron, “Advanced coupling matrix synthesis techniques for microwave filters,” IEEE Trans. Microwave Theory Tech., vol. 51, no. 1, pp. 1–10, Jan. 2003. https://doi.org/10.1109/TMTT.2002.806937

R. J. Cameron, C. M. Kudsia, and R. R. Mansour, Microwave Filters for Communication Systems, Fundamentals, Design and Applications. New York: Wiley, 2007.

R. J. Cameron, “Advanced Filter Synthesis,” IEEE Microwave Magazine, vol. 12, no.6, pp. 42–61, Oct. 2011. https://doi.org/10.1109/MMM.2011.942007

R. Levy, R.V. Snyder, and G. Matthaei, “Design of microwave filters,” IEEE Transactions on Microwave Theory and Techniques, vol. 50, no. 3, pp. 783–793, Mar. 2002. https://doi.org/10.1109/22.989962

C. Bachiller, H. E. Gonzalez, V. E. B. Esbert, A.B. Martinez, and J.V. Morro, “Efficient Technique for the Cascade Connection of Multiple Two-Port Scattering Matrices,” IEEE Transactions on Microwave Theory and Techniques, vol. 55, no. 9, pp. 1880–1886, Sept. 2007. https://doi.org/10.1109/TMTT.2007.904076

S. Bastioli, C. Tomassoni, and R. Sorrentino, “A New Class of Waveguide Dual-Mode Filters Using TM and Nonresonating Modes,” IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 12, Dec. 2010. https://doi.org/10.1109/TMTT.2010.2086068

C. Tomassoni, S. Bastioli, and R Sorrentino, “Generalized TM Dual-Mode Cavity Filters,” IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 12, pp. 3338–3346. Dec. 2011. https://doi.org/10.1109/TMTT.2011.2172622

Q.-X. Chu, X. Ouyang, H. Wang, and F.-C. Chen, “TE_{01delta}-Mode Dielectric-Resonator Filters With Controllable Transmission Zeros,” IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 3, pp. 1086–1094, Mar. 2013. https://doi.org/10.1109/TMTT.2013.2238551

I. D. Robertson, D. Sanchez-Hernandez, and U. Karacaoglu, “CAD techniques for microwave circuits,” Electronics & Communication Engineering Journal, vol. 8, no. 6, pp. 245–256, Dec.1996. https://doi.org/10.1049/ecej:19960601

V. E. Boria, M. Guglielmi, and P. Arcioni, “Computer-aided design of inductively coupled rectangular waveguide filters including tuning elements,” International Journal of RF and Microwave Computer-Aided Engineering, vol. 8 no. 3, pp. 226–235, May 1998. https://doi.org/10.1002/(SICI)1099-047X(199805)8:3<226::AIDMMCE6>3.0.CO;2-H

C. Bachiller, H. Esteban, V. E. Boria, J. V. Morro, L. J. Rogla, M. Taroncher, A. Belenguer. “Efficient CAD tool of direct-coupled-cavities filters with dielectric resonators,” 2005 IEEE Antennas and Propagation Society International Symposium. IEEE, Washington, DC, USA, pp. 578–581, July 2005. https://doi.org/10.1109/APS.2005.1551624

J. V. M. Ros, P. S. Pacheco, H. E. Gonzalez, V. E. B. Esbert, C. B. Martin, M. T. Calduch, and B. G. Martinez, “Fast automated design of waveguide filters using aggressive space mapping with a new segmentation strategy and a hybrid optimization algorithm,” IEEE Transactions on Microwave Theory and Techniques, vol. 53, no. 4, pp. 1130–1142, Apr. 2005. https://doi.org/10.1109/TMTT.2005.845685

J. C. Melgarejo, J. Ossorio, S. Cogollos, M. Guglielmi, V. E. Boria, and J. W. Bandler, “On Space Mapping Techniques for Microwave Filter Tuning,” IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 12, 2019, pp. 4860–4870. https://doi.org/10.1109/TMTT.2019.2944361

J. W. Bandler, Q. S. Cheng, S. A. Dakroury, A. S. Mohamed, M. H. Bakr, K. Madsen, and J. Sondergaard, “Space Mapping: The State of the Art,” IEEE Transactions on Microwave Theory and Techniques, vol. 52, no. 1, pp. 337–361, Jan. 2004. https://doi.org/10.1109/TMTT.2003.820904

WASP NET‘s wide application range for accurate, fast EM CAD and optimization of all kinds of passive microwave components [Online]. Available: http://www.mig-germany.com/seite18.html [Accessed Nov. 10. 2019].

S. Bastioli and R. V. Snyder, “Inline Pseudoelliptic TE_{01delta}-Mode Dielectric Resonator Filters Using Multiple Evanescent Modes to Selectively Bypass Orthogonal Resonators,” IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 12, pp. 3988–4001, Dec. 2012. https://doi.org/10.1109/TMTT.2012.2222659

C. Tomassoni, S. Bastioli, and R. V. Snyder, R. V. “Propagating Waveguide Filters Using Dielectric Resonators,” IEEE Transactions on Microwave Theory and Techniques, vol. 63, no. 12, pp. 4366–4375, Dec. 2015. https://doi.org/10.1109/TMTT.2015.2495284

C. Bachiller, H. Esteban, J. V. Morro, and V. Boria, “Hybrid mode matching method for the efficient analysis of rods in waveguided structures,” Mathematical and Computer Modelling, vol. 57, no. 7-8, pp. 1832–1839, Apr. 2013. https://doi.org/10.1016/j.mcm.2011.11.076

H. Aghayari, J. Nourinia, C. Ghobadi, and B. Mohammadi, “Realization of dielectric loaded waveguide filter with substrate integrated waveguide technique based on incorporation of two substrates with different relative permittivity,” AEU – International Journal of Electronics and Communications, vol. 86, pp. 17–24, Mar. 2018. https://doi.org/10.1016/j.aeue.2018.01.008

F. D. Q. Pereira, V. E. B. Esbert, J. P. Garcia, A. V. Pantaleoni, A. A. Melcon, J. G. L. Tornero, and B. Gimeno, “Efficient Analysis of Arbitrarily Shaped Inductive Obstacles in Rectangular Waveguides Using a Surface Integral-Equation Formulation,” IEEE Transactions on Microwave Theory and Techniques, vol. 55, no. 4, pp. 715–721, Apr. 2007. https://doi.org/10.1109/TMTT.2007.893673

R. Kushnin, J. Semenjako, Y. V. Shestopalov, “Accelerated Boundary Integral Method for Solving the Problem of Scattering by Multiple Multilayered Circular Cylindrical Posts in a Rectangular Waveguide,” 2017 Progress In Electromagnetics Research Symposium – Spring (PIERS), St. Peterburg, Russia, pp. 3263–3271, May 2017. https://doi.org/10.1109/PIERS.2017.8262320

C. Bachiller, H. Esteban, H. Mata, M. A. Valdes, V. E. Boria, Á Belenguer, and J. V. Morro, “Hybrid Mode Matching Method for the Efficient Analysis of Metal and Dielectric Rods in H Plane Rectangular Waveguide Devices,” IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 12, pp. 3634–3644, Dec. 2010. https://doi.org/10.1109/TMTT.2010.2083951

Trans Tech. Products for RF/Microwave Applications [Online]. Available: http://www.trans-techinc.com/files/tti_catalog.pdf [Accessed 12 Oct. 2018].

EXXELIA TEMEX. Dielectric resonators 07/2015 [Online]. Available: https://exxelia.com/uploads/PDF/e7000-v1.pdf [Accessed 8 Oct.2019].

M. Y. Sandhu and I. C. Hunter, “Miniaturized dielectric waveguide filters,” International Journal of Electronics, vol. 103, issue 10, pp. 1776–1787, 2016. https://doi.org/10.1080/00207217.2016.1138531

R. Snyder, “Practical aspects of microwave filter development,” IEEE Microwave Magazine, vol. 8, no. 2, pp. 42–54, Apr. 2007. https://doi.org/10.1109/MMW.2007.335528

J. Ossorio, V. E. Boria, M. Guglielmi, “Dielectric Tuning Screws for Microwave Filters Applications.” 2018 IEEE/MTT-S International Microwave Symposium – IMS, Philadelphia, PA, USA, pp. 1253–1256, June 2018. https://doi.org/10.1109/MWSYM.2018.8439857

P. Harscher and P. Vahldieck, R. “Automated computer-controlled tuning of waveguide filters using adaptive network models,” IEEE Transactions on Microwave Theory and Techniques, vol. 49, no. 11, pp. 2125–2130, Nov. 2001. https://doi.org/10.1109/22.963147

RF Microwave. 5.8 – 11 GHz wide bandwidth band-pass filter, SMA female connectors [Online]. Available: https://www.rf-microwave.com/en/nbp/nmp/5-8-11-ghz-wide-bandwidth-band-pass-filter-sma-female-connectors/fbp-5.8-11g/. [Accessed 01 Nov. 2019]

SAGE, Millimeter, Inc. 29 to 35 GHz Passband, 40 dB Rejection from DC to 27 GHz and 37 to 45 GHz, Ka Band, WR-28 Waveguide Bandpass Filter [Online]. Available: https://www.sagemillimeter.com/29-to-35-ghz-passband-40-db-rejection-from-dc-to-27-ghz-and-37-to-45-ghz-ka-band-wr-28-waveguide-bandpass-filter/ [Accessed 01 Nov. 2019].

J. B. Ness and V. A. Lenivenko, “Design and manufacture of ‘exact’ waveguide filters,” 2000 Asia-Pacific Microwave Conference Proceedings (Cat. No.00TH8522), 3–6 Dec. 2000, Sydney, NSW, Australia, pp. 507–511. https://doi.org/10.1109/APMC.2000.925884

J. Zhou and J. Huang, “Intelligent tuning for microwave filters based on multi-kernel machine learning model,” 5th IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, 29–31 Oct. Chengdu, China, pp. 259–266, Dec. 2013. https://doi.org/10.1109/MAPE.2013.6689881

V. Miraftab and R. R. Mansour, “Computer-aided tuning of microwave filters using fuzzy logic,” IEEE Transactions on Microwave Theory and Techniques, vol. 50, no. 12, pp. 2781–2788, Dec. 2002. https://doi.org/10.1109/TMTT.2002.805291

K. Kimsis, J. Semenjako, R. Kushnin, A. Viduzs, “A Numerical Implementation of Efficient Cross-section Method for the Analysis of Arbitrarily Shaped Dielectric Obstacles in Rectangular Waveguide,” 2017 Progress in Electromagnetics Research Symposium - Spring (PIERS), St. Petersburg, Russia, pp. 3937–3943, May 2017. https://doi.org/10.1109/PIERS.2017.8262320

Downloads

Published

2020-12-01

How to Cite

Kimsis, K., Semenjako, J., & Shestopalov, Y. V. (2020). Effectively Tunable Bandpass Waveguide Filter Based on Incorporation of Coupled Cylindrical Resonators Cut in Half. Electrical, Control and Communication Engineering, 16(2), 78-87. https://doi.org/10.2478/ecce-2020-0012