A New Quasi Open Loop Synchronization Technique for Grid-Connected Applications

Authors

DOI:

https://doi.org/10.2478/ecce-2021-0006

Keywords:

Adaptive linear neuron (ADALINE), Distributed energy sources (DES), Low voltage ride through operation (LVRT), Open loop synchronization (OLS), Self-tuning filter (STF)

Abstract

This paper presents an effective quasi open-loop (QOLS) synchronization technique for grid -connected power converters that is organized in two different blocks. The first block is a new flexible technique for extracting the positive and negative sequence voltage under unbalanced and distorted conditions. It is a decoupled double self-tuning filter (DD-STF) or multiple self-tuning filters (M-STF) according to the conditions. The main advantages of this technique are its simple structure and the fact of being able to work under highly distorted conditions. Each harmonic is separately treated and this allows for selective compensation in active filter applications. The second block is the frequency detector; we propose a neural approach based on an ADALINE for online adaptation of the cut-off frequency of the DD-STF and M-STF considering a possible variation in the main frequency. The main advantage of this method is its immunity to the voltage signal amplitude and phase. In order to improve the performance of the frequency estimation under distorted source voltage, a pre-filtering stage is introduced. Experimental tests validate the proposed method and illustrate all its interesting features. Results show high performance and robustness of the method under low voltage ride through.

References

B. K. Bose, “Global energy scenario and impact of power electronics in the 21st century”, IEEE Trans. Ind. Electron., vol. 60, no. 7, pp. 2638–2651, Jul. 2013. https://doi.org/10.1109/TIE.2012.2203771

H. Wang, M. Liserre, and F. Blaabjerg, “Toward reliable power electronics: Challenges, design tools, and opportunities”, IEEE Ind. Electron Mag., vol. 7, no. 2, pp. 17–26, Jun. 2013. https://doi.org/10.1109/MIE.2013.2252958

M. Liserre, T. Sauter, and J. Y. Hung, “Future energy systems: Integrating renewable energy sources into the smart power grid through industrial electronics”, IEEE Ind. Electron. Mag., vol. 4, no. 1, pp. 18–37, Mar. 2010. https://doi.org/10.1109/MIE.2010.935861

F. Blaabjerg, Y. Yang, D. Yang, and X. Wang, “Distributed power generation systems and protection”, Proc. IEEE, vol. 105, no. 7, pp. 1311–1331, 2017. https://doi.org/10.1109/JPROC.2017.2696878

F. Blaabjerg. Control of Power Electronic Converters and Systems, vol. 2. Academic Press, 2018.

D. Dong, B. Wen, D. Boroyevich, P. Mattavelli, and Y. Xue, “Analysis of Phase-Locked Loop Low-Frequency Stability in Three-Phase Grid-Connected Power Converters Considering Impedance Interactions”, IEEE Trans. Ind. Electron., vol. 62, no. 1, pp. 310–321, Jan. 2015. https://doi.org/10.1109/TIE.2014.2334665

A. Malkhandi and T. Ghose, “A Fourier-based single phase PLL algorithm: Design, analysis, and implementation in FPGA controller”, International Transactions on Electrical Energy Systems, vol. 27, no. 10, p. e2410, 2017. https://doi.org/10.1002/etep.2410

S. R. Arya, M. M. Patel, S. J. Alam, J. Srikakolapu, and A. K. Giri, “Phase lock loop–based algorithms for DSTATCOM to mitigate load created power quality problems”, International Transactions on Electrical Energy Systems, vol. 30, no. 1, p. e12161, 2020. https://doi.org/10.1002/2050-7038.12161

L. Hadjidemetriou, E. Kyriakides, and F. Blaabjerg, “A robust synchronization to enhance the power quality of renewable energy systems”, IEEE Trans. Ind. Electron., vol. 62, no. 8, pp. 4858–4868, 2015. https://doi.org/10.1109/TIE.2015.2397871

S. Golestan, A. Vidal, A. G. Yepes, J. M. Guerrero, J. C. Vasquez, and J. Doval-Gandoy, “A true open-loop synchronization technique”, IEEE Trans. Ind. Inform., vol. 12, no 3, pp. 1093–1103, 2016. https://doi.org/10.1109/TII.2016.2550017

S. Golestan, J. M. Guerrero, and J. C. Vasquez, “Three-phase PLLs: A review of recent advances”, IEEE Trans. Power Electron., vol. 32, no 3, pp. 1894–1907, 2017. https://doi.org/10.1109/TPEL.2016.2565642

S. Golestan, J. M. Guerrero, and J. C. Vasquez, “An open-loop grid synchronization approach for single-phase applications”, IEEE Trans. Power Electron., vol. 33, no. 7, pp. 5548–5555, Jul. 2018. https://doi.org/10.1109/TPEL.2017.2782622

S. Golestan, J. M. Guerrero, J. C. Vasquez, A. M. Abusorrah, and Y. Al-Turki, “A Study on Three-phase FLLs”, IEEE Trans. Power Electron., vol. 34, no 1, pp. 213–224, 2019. https://doi.org/10.1109/TPEL.2018.2826068

S. Golestan, J. M. Guerrero, “Conventional Synchronous Reference Frame Phase-Locked Loop is an Adaptive Complex Filter”, IEEE Trans. Ind. Electron., vol. 62, no. 3, pp. 1679–1682, March 2015. https://doi.org/10.1109/TIE.2014.2341594

S. Golestan, J. M. Guerrero, and J. C. Vasquez, “DC-offset rejection in phase-locked loops: A novel approach”, IEEE Trans. Ind. Electron., vol. 63, no. 8, pp. 4942–4946, 2016. https://doi.org/10.1109/TIE.2016.2546219

Z. Chedjara, A. Massoum, P. Wira, A. Safa, and A. Gouichiche, “A fast and robust reference current generation algorithm for three-phase shunt active power filter,” International Journal of Power Electronics and Drive Systems (IJPEDS), vol. 12, no. 1, pp. 121–129, Mar. 2021. https://doi.org/10.11591/ijpeds.v12.i1.pp121-129

S. Golestan, M. Monfared, and F. D. Freijedo, “Design-oriented study of advanced synchronous reference frame phase-locked loops”, IEEE Trans. Power Electron., vol. 28, no 2, p. 765–778, 2013. https://doi.org/10.1109/TPEL.2012.2204276

S. Golestan, M. Monfared, F. D. Freijedo, and J. M. Guerrero, “Advantages and challenges of a type-3 PLL”, IEEE Trans. Power Electron., vol. 28, no 11, p. 4985–4997, 2013. https://doi.org/10.1109/TPEL.2013.2240317

S. Golestan, F. D. Freijedo, A. Vidal, J. M. Guerrero, J. Doval-Gandoy, “A Quasi-Type-1 Phase-Locked Loop Structure”, IEEE Trans. Power Electron., vol. 29, no. 12, pp. 6264–6270, Dec. 2014. https://doi.org/10.1109/TPEL.2014.2329917

P. Rodríguez, A. Luna, I. Candela, R. Mujal, R. Teodorescu, and F. Blaabjerg, “Multiresonant frequency-locked loop for grid synchronization of power converters under distorted grid conditions”, IEEE Trans. Ind. Electron., vol. 58, no 1, pp. 127–138, 2011. https://doi.org/10.1109/TIE.2010.2042420

Z. Xin, X. Wang, Z. Qin, M. Lu, P. C. Loh, and F. Blaabjerg, “An Improved second-order generalized integrator based quadrature signal Generator”, IEEE Trans. Power Electron, vol. 31, no. 12, pp. 8068–8073, Dec. 2016. https://doi.org/10.1109/TPEL.2016.2576644

P. Kanjiya, V. Khadkikar, and M. S. El Moursi, “Obtaining Performance of Type-3 Phase-Locked Loop Without Compromising the Benefits of Type-2 Control System”, IEEE Trans. Power Electron., vol. 33, no. 2, pp. 1788–796, 2018. https://doi.org/10.1109/TPEL.2017.2686440

E. Guest and N. Mijatovic, “Discrete-time complex bandpass filters for three-phase converter systems”, IEEE Trans. Ind. Electron., vol. 66, no. 6, pp. 4650–4660, 2018. https://doi.org/10.1109/TIE.2018.2860554

Z. Xin, R. Zhao, F. Blaabjerg, L. Zhang, and P. C. Loh, “An improved flux observer for field-oriented control of induction motors based on dual second-order generalized integrator frequency-locked loop”, IEEE J. Emerging Sel. Top. Power Electron, vol. 5, no. 1, pp. 513–525, Mar. 2017. https://doi.org/10.1109/JESTPE.2016.2623668

A. Safa, E. M. Berkouk, Y. Messlem, Z. Chedjara, and A. Gouichiche, “A Pseudo Open Loop Synchronization technique for heavily distorted grid voltage”, Electr. Power Syst. Res., vol. 158, pp. 136–146, 2018. https://doi.org/10.1016/j.epsr.2018.01.014

S. Golestan, J. M. Guerrero, and J. C. Vasquez, “Is Using A Complex Control Gain in Three-phase FLLs Reasonable?”, IEEE Transactions on Industrial Electronics, vol. 67, no. 3, pp. 2480–2484, 2020. https://doi.org/10.1109/TIE.2019.2903748

S. Golestan, J. M. Guerrero, and J. C. Vasquez, “Modelling and stability assessment of single-phase grid synchronization techniques: Linear time periodic versus linear time-invariant frameworks”, IEEE Trans. Power Electron., vol. 34, no. 1, pp. 20–27, May 2018. https://doi.org/10.1109/TPEL.2018.2835144

X. Wang, L. Harnefors, and F. Blaabjerg, “Unified impedance model of grid-connected voltage-source converters”, IEEE Trans. Power Electron., vol. 33, no. 2, pp. 1775–1787, 2017. https://doi.org/10.1109/TPEL.2017.2684906

J. Z. Zhou, H. Ding, S. Fan, Y. Zhang, and A. M. Gole, “Impact of Shortcircuit ratio and phase-locked-loop parameters on the small-signal the behavior of a VSC-HVDC converter”, IEEE Trans. Power Del., vol. 29, no. 5, pp. 2287–2296, 2014. https://doi.org/10.1109/TPWRD.2014.2330518

X. Wang, F. Blaabjerg, and P. C. Loh, “Passivity-based stability analysis and damping injection for multi paralleled VSCs with LCL filters”, IEEE Trans. Power Electron, vol. 32, no. 11, pp. 8922–8935, 2017. https://doi.org/10.1109/TPEL.2017.2651948

X. Wang and F. Blaabjerg, “Harmonic stability in power electronic based power systems: Concept, Modelling, and Analysis”, IEEE Trans. Smart Grid, vol. 10, no. 3, pp. 2858–2870, 2018. https://doi.org/10.1109/TSG.2018.2812712

L. Harnefors, R. Finger, X. Wang, H. Bai, and F. Blaabjerg, “VSC input admittance modeling and analysis above the Nyquist frequency for passivity-based stability assessment”, IEEE Trans. Ind. Electron., vol. 64, no. 8, pp. 6362–6370, 2017. https://doi.org/10.1109/TIE.2017.2677353

Y. Gui, X. Wang, H. Wu, and F. Blaabjerg, “Voltage Modulated Direct Power Control for Weak Grid-Connected Voltage Source Inverters”, IEEE Transactions on Power Electronics, vol. 34, no. 11, pp. 11383–11395, 2019. https://doi.org/10.1109/TPEL.2019.2898268

F. Baradarani, M. R. D. Zadeh, and M. A. Zamani, “A phase-angle estimation method for synchronization of grid -connected power electronic converters”, IEEE Trans. Power Del., vol. 30, no. 2, pp. 827–835, Apr. 2015. https://doi.org/10.1109/TPWRD.2014.2362930

K. J. Lee, J. P. Lee, D. Shin, D. W. Yoo, and H. J. Kim, “A novel grid synchronization PLL method based on adaptive low-pass notch filter for grid-connected PCS”, IEEE Trans. Ind. Electron., vol. 61, no. 1, pp. 292–301, Jan. 2014. https://doi.org/10.1109/TIE.2013.2245622

E. Robles, J. Pou, S. Recio, J. Zaragoza, J. Martin, and P. Ibaez, “Frequency adaptive stationary reference frame grid voltage sequence detector for distributed generation systems”, IEEE Trans. Ind. Electron, vol. 58, no. 9, pp. 4275–4287, Sep. 2011. https://doi.org/10.1109/TIE.2010.2098352

S. Biricik, S. Redif, Ö. C. Özerdem, S. K. Khadem, and M. Basu, “Real time control of shunt active power filter under distorted grid voltage and unbalanced load condition using self-tuning filter”, IET Power Electron., vol. 7, no 7, pp. 1895–1905, 2014. https://doi.org/10.1049/iet-pel.2013.0924

A. Boussaid, A. L. Nemmour, L. Louze, and A. Khezzar, “A novel strategy for shunt active filter control”, Electric Power Systems Research, vol. 123, pp. 154–163, 2015. https://doi.org/10.1016/j.epsr.2015.02.008

D. Halbwachs, P. Wira, and J. Mercklé, “Adaline-based approaches for time-varying frequency estimation in power systems”, IFAC Proc. Vol., vol. 42, no. 19, pp. 31–36, 2009. https://doi.org/10.3182/20090921-3-TR-3005.00008

Z. Chedjara, A. Massoum, S. Massoum, P. Wira, A. Safa, and A. Gouichiche, “A novel robust PLL algorithm applied to the control of a shunt active power filter using a self-tuning filter concept”, IEEE International Conference on Industrial Technology (ICIT), 20–22 Feb. 2018, pp. 1124–1131. https://doi.org/10.1109/ICIT.2018.8352336

S. Golestan, F. D. Freijedo, A. Vidal, A. G. Yepes, J. M. Guerrero, and J. Doval-Gandoy, “An Efficient Implementation of Generalized Delayed Signal Cancellation PLL,” IEEE Trans. Power Electron., vol. 31, no. 2, pp. 1085–1094, Feb. 2016. https://doi.org/10.1109/TPEL.2015.2420656

L. Zheng, H. Geng, and G. Yang, “Fast and robust phase estimation algorithm for heavily distorted grid conditions”, IEEE Trans. Ind. Electron., vol. 63, no. 11, pp. 6845–6855, 2016. https://doi.org/10.1109/TIE.2016.2585078

Downloads

Published

2021-06-01

How to Cite

Chedjara, Z., Massoum, A., Wira, P., Safa, A., & Gouichiche, A. (2021). A New Quasi Open Loop Synchronization Technique for Grid-Connected Applications. Electrical, Control and Communication Engineering, 17(1), 47-58. https://doi.org/10.2478/ecce-2021-0006