Dual-Band, EBG-DGS Wearable Antenna for Emergency Services and Responses in WBAN
DOI:
https://doi.org/10.2478/ecce-2022-0001Keywords:
Defected ground structure (DGS), electromagnetic bandgap (EBG) substrates, emergency search services, internet of things (IoT), wearable antenna, wireless body area network (WBAN), wireless local area network (WLAN)Abstract
The paper introduces a compact, thin flexible textile antenna integrated with an Electromagnetic Bandgap (EBG) and Defected Ground Structure (DGS) covering the Wireless Local Area Networks (WLAN) bands (2.4-2.485 GHz and 5.1-5.9 GHz) for emergency services and responses. The geometry and configuration of the proposed antenna are made from common clothing jeans fabric, which makes the antenna more flexible, thin, and conformal. A new configuration of EBG structure is developed using Minkowski fractal geometry as base geometry and a DGS with the complementary dumbbell-shaped slot to operate in WLAN standards. The EBG structure is used to isolate the antenna from the human body, whereas the DGS is used to improve the bandwidth and polarization purity. The prototype covers the WLAN bands with gains of 3.37 dBi and 6.47 dBi, a bandwidth of 115.9 MHz, and 398.06 MHz for the specified wireless bands. The integrated antenna demonstrates a Front to Back Ratio (FBR) of 16.77 dB and 32.72 dB, the radiation efficiency of 36.9 % and 73.8 %, and a better cross-polarization level at 2.45 GHz, 5.85 GHz, respectively. The antenna shows a high gain and an efficiency of about 70 % under the various bending scenario. Thus, the anticipated antenna is the most appropriate and potential candidate for wearable applications in various domains.References
F. Pervez, J. Qadir, M. Khalil, T. Yaqoob, U. Ashraf, and S. Younis, “Wireless technologies for emergency response: A comprehensive review and some guidelines”, IEEE Access, vol. 6, pp. 71814–71838, Nov. 2018. https://doi.org/10.1109/ACCESS.2018.2878898
E. F. Sundarsingh, S. Velan, M. Kanagasabai, A. K. Sarma, C. Raviteja, and M. G. N. Alsath, “Polygon-shaped slotted dual-band antenna for wearable applications”, IEEE Antennas Wirel. Propag. Lett., vol. 13, pp. 611–614, Mar. 2014. https://doi.org/10.1109/LAWP.2014.2313133
D. Kumar and D. Mathur, “Dual band wearable antenna for IoT applications”, Int. J. Innov. Technol. Explor. Eng., vol. 9, no. 1, pp. 1515–1518, Nov. 2019. https://doi.org/10.35940/ijitee.A4344.119119
S. Bhattacharjee, S. Teja, M. Midya, S. R. Bhadra Chaudhuri, and M. Mitra, “Dual band dual mode triangular textile antenna for body-centric communications”, in 2019 URSI Asia-Pacific Radio Science Conference (AP-RASC), Mar. 2019, pp. 1–5. https://doi.org/10.23919/URSIAPRASC.2019.8738361
M. P. Raju, D. S. Phani Kishore, and B. T. P. Madhav, “CPW fed Tshaped wearable antenna for ISM band, Wi-Fi, WiMAX, WLAN and fixed satellite service applications”, J. Electromagn. Eng. Sci., vol. 19, no. 2, pp. 140–146, 2019. https://doi.org/10.26866/jees.2019.19.2.140
S. L. Gunamony and J. B. Gnanadhas, “Design and investigations of miniaturized dual-band quarter concentric circular ring antenna for LTE and 5G applications”, Arab. J. Sci. Eng., vol. 46, no. 10, pp. 9617–9626, 2021. https://doi.org/10.1007/s13369-021-05375-3
H. Yalduz, B. Koç, L. Kuzu, and M. Turkmen, “An ultra-wide band low- SAR flexible metasurface-enabled antenna for WBAN applications”, Appl. Phys. A Mater. Sci. Process., vol. 125, no. 9, pp. 1–11, Aug. 2019. https://doi.org/10.1007/s00339-019-2902-4
C. Mao, P. L. Werner, D. H. Werner, Di. Vital, and S. Bhardwaj, “Dual-polarized armband embroidered textile antenna for on-/off-body wearable applications”, in 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Atlanta, GA, USA, Jul. 2019 pp. 1555–1556. https://doi.org/10.1109/APUSNCURSINRSM.2019.8889041
E. L. M. Wissem, I. Sfar, L. Osman, and J. M. Ribero, “A textile EBGbased antenna for future 5G-IoT millimeter-wave applications,” Electron., vol. 10, no. 2, pp. 1–12, 2021. https://doi.org/10.3390/electronics10020154
F. Yang and Y. Rahmat-Samii, “EBG characterizations and classifications”, Electromagn. Band Gap Struct. Antenna Eng., pp. 59–86, 2010. https://doi.org/10.1017/CBO9780511754531.004
V. P. Kudumu and V. S. P. Mokkapati, “Reduction of surface waves in arrays using uni-planar EBG”, Int. J. Recent Technol. Eng., vol. 8, no. 3, pp. 8065–8069, 2019. https://doi.org/10.1109/ICSPCom.2015.7150631
H. Liu, Z. Li, X. Sun, and J. Mao, “Harmonic suppression with photonic bandgap and defected ground structure for a microstrip patch antenna”, IEEE Microw. Wirel. Components Lett., vol. 15, no. 2, pp. 55–56, Feb. 2005. https://doi.org/10.1109/LMWC.2004.842809
M. Wang et al., “Investigation of SAR reduction using flexible antenna with metamaterial structure in wireless body area network,” IEEE Trans. Antennas Propag., vol. 66, no. 6, pp. 3076–3086, Mar. 2018. https://doi.org/10.1109/TAP.2018.2820733
B. C.A, “Antenna Theory_Analysis and Design (1996).pdf.”.
D. Sievenpiper, L. Zhang, R. F. Jimenez Broas, N. G. Alexöpolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band”, IEEE Trans. Microw. Theory Tech., vol. 47, no. 11, pp. 2059–2074, Nov. 1999. https://doi.org/10.1109/22.798001
X. Wang and Y. Hao, “Dual-band operation of an electromagnetic bandgap patch antenna”, Microw. Opt. Technol. Lett., vol. 49, no. 11, pp. 2562–2568, Jul. 2007. https://doi.org/10.1002/mop.22728
S. Zhu and R. Langley, “Dual-band wearable textile antenna on an EBG substrate”, IEEE Trans. Antennas Propag., vol. 57, no. 4, pp. 926–935, Apr. 2009. https://doi.org/10.1109/TAP.2009.2014527
R. C. Hadarig, M. E. De Cos, and F. Las-Heras, “Microstrip patch antenna bandwidth enhancement using AMC/EBG structures”, Int. J. Antennas Propag., vol. 2012, Art no. 843754, 2012. https://doi.org/10.1155/2012/843754
N. Husna et al., “Dual-band suspended-plate wearable textile antenna”, IEEE Antennas and Wireless Propagation Letters, vol. 12, pp. 583–586, Apr. 2013. https://doi.org/10.1109/LAWP.2013.2259211
S. Yan, P. J. Soh, and G. A. E. Vandenbosch, “Low-profile dual-band textile antenna with artificial magnetic conductor plane”, IEEE Trans. Antennas Propag., vol. 62, no. 12, pp. 6487–6490, Sep. 2014. https://doi.org/10.1109/TAP.2014.2359194
S. Velan et al., “Dual-band EBG integrated monopole antenna deploying fractal geometry for wearable applications”, IEEE Antennas Wirel. Propag. Lett., vol. 14, pp. 249–252, Apr. 2015. https://doi.org/10.1109/LAWP.2014.2360710
T. Andriamiharivolamena, P. Lemaître-Auger, S. Tedjini, and F. Tirard, “Compact planar monopole antenna for wearable wireless applications”, Comptes Rendus Phys., vol. 16, no. 9, pp. 851–861, Nov. 2015. https://doi.org/10.1016/j.crhy.2015.07.008
H. Yang, W. Yao, Y. Yi, X. Huang, S. Wu, and B. Xiao, “A dual-band low-profile metasurface-enabled wearable antenna for WLAN devices”, vol. 61, pp. 115–125, Jan. 2016. https://doi.org/10.2528/PIERC15092803
A. Mersani, L. Osman, and J. M. Ribero, “Performance of dual-band AMC antenna for wireless local area network applications”, IET Microwaves, Antennas Propag., vol. 12, no. 6, pp. 872–878, May 2018. https://doi.org/10.1049/iet-map.2017.0476
B. P. Nadh, B. T. P. Madhav, and M. S. Kumar, “Design and analysis of dual band implantable DGS antenna for medical applications”, Sadhana - Acad. Proc. Eng. Sci., vol. 44, no. 6, pp. 1–9, May 2019. https://doi.org/10.1007/s12046-019-1099-8
A. Y. I. Ashyap et al., “Robust and efficient integrated antenna with EBGDGS enabled wide bandwidth for wearable medical device applications,” IEEE Access, vol. 8, pp. 56346–56358, 2020. https://doi.org/10.1109/ACCESS.2020.2981867
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Sandhya Mallavarapu et al., published by Sciendo
This work is licensed under a Creative Commons Attribution 4.0 International License.