Application of Neural Network Technologies for Price Forecasting in the Liberalized Electricity Market

Authors

  • Valentin Gerikh JSC "INTER RAO UES", Moskow, Russia
  • Irina Kolosok Energy System Institute, Irkutsk, Russia
  • Victor Kurbatsky Energy System Institute, Irkutsk, Russia
  • Nikita Tomin Energy System Institute, Irkutsk, Russia

DOI:

https://doi.org/10.2478/v10144-009-0020-4

Abstract

The paper presents the results of experimental studies concerning calculation of electricity prices in different price zones in Russia and Europe. The calculations are based on the intelligent software "ANAPRO" that implements the approaches based on the modern methods of data analysis and artificial intelligence technologies.

References

Haykin S. Neural networks. A comprehensive foundation. Second edition / S. Haykin.-Williams Publishing House, 2006.-1104 p.

Valineyev A. A. Review of a day-ahead electricity market for September / A. A. Valineyev// Energorynok, №10. - 2008. C. 54-59 (in Russian)

Subbotin A. V. Volatility and correlation of share indices on a set of time horizons/A. V. Subbotin, E. A. Buyanova// Upravlenie riskom, №3, 2008. C. 51-59

Zhang Yun. RBF neural network and ANFIS-based short-term load forecasting approach in real-time price environment / Zhang Yun et al // IEEE Transactions in Power Systems, Vol. 23, No. 3, August, 2008. PP. 853-858

Zwang Li. Neural network-based market clearing price prediction and confidence interval estimation with an improved extended Kalman filter method / Li Zwang, Peter B Luh // IEEE Transactions in Power Systems, Vol. 20, No. 1, February, 2005. Pp. 59-63

Alicia Troncoso Lora. Electricity market price forecasting based on weighted nearest neighbors techniques / Alicia Troncoso Lora, Jesus M. Riquelme, Antonio Gomez Exprosito // IEEE Transactions in Power Systems, Vol. 22, No. 3, August, 2007. PP. 1296-1301

Jun Tun. A Statistical approach for interval forecasting of the electricity price / Jun Tun, Zhao Yang Dong, Zhao Xu // IEEE Transactions in Power Systems, Vol. 23, No. 2, May, 2008. PP. 267-275

Contreras J., Espinola R., Nogales F. J., Conejo A. J. ARIMA Models to Predict Next-Day Electricity Prices // IEEE Trans. Power Systems, August 2003, vol. 18, No. 3, pp. 1014-1020.

Fosso O. B., Gjelsvik A., Haugstad A., Birger M., Wangensteen I. Generation Scheduling in a Deregulated System. The Norwegian Case // IEEE Trans. Power Systems, February 1999, vol. 14, No. 1, pp. 75-81.

Szkuta B. R., Sanabria L. A., Dillon T. S. Electricity Price Short-Term Forecasting using Artificial Neural Networks // IEEE Trans. Power Systems, August 1999, vol. 14, No. 3, pp. 851-857.

Queiroz A. R. Simulating Electricity Spot Prices in Brazil Using Neural Network and Design of Experiments / A. R. Queiroz, F. A. Oliveira, J. W. Marangon Lima, P. P. Balestrassi // IEEE Trans. Power Systems, August 2007, vol. 14, No. 3, pp. 851-857.

Claudia P. Rodriguez. Energy Price Forecasting in the Ontario Competitive Power System Market // IEEE Trans. Power Systems, February 2004, vol. 19, No. 1, pp. 366-374.

Ramsay B., Wang A. J. An Electricity Spot-Price Estimator with Particular Reference to Weekends and Public Holidays // Proc. of the Universities Power Engineering Conference, UPEC'97, Manchester, UK, September 1997

Kurbatsky V. G. Application of ANAPRO software for analysis and forecasting of state parameters and process characteristics in electric power systems/ V. G. Kurbatsky, N. V. Tomin. Proceedings of the 8th Baikal All-Russian Conf. "Information and mathematical technologies in science and management." Part 1.-Irkutsk: SEI SB RAS, 2008.-P.91-99.

Kurbatsky V. G. Software for electric power industry problems on the basis of user application macros conception / V. G. Kurbatsky, N. V. Tomin. Proceedings of the 8th Baikal All-Russian Conf. "Information and mathematical technologies in science and management." Part 1.-Irkutsk: SEI SB RAS, 2008.-P.206-212

Downloads

Published

2009-01-01

How to Cite

Gerikh, V., Kolosok, I., Kurbatsky, V., & Tomin, N. (2009). Application of Neural Network Technologies for Price Forecasting in the Liberalized Electricity Market. Electrical, Control and Communication Engineering, 25(25), 91-96. https://doi.org/10.2478/v10144-009-0020-4