Application of Simplified Neutral Point Clamped Multilevel Converter in a Small Wind Turbine

Pawel Mlodzikowski (Doctoral Student, Warsaw University of Technology - WUT),
Adam Milczarek (Doctoral Student, WUT), Mariusz Malinowski (Leading Researcher, WUT)

Abstract – In low power distributed generation systems low cost together with the energy quality requirements are a key element. It is known that quality of voltage waveforms generated from multilevel converters is better in comparison with those from two-level. Due to advancements in power electronics and microcontrollers, multilevel converters are being built with the use of integrated power modules thus this type of converters are getting more compact in size. This paper investigates performance of a derivation from the most popular multilevel topology – a neutral point clamped converter (NPC). Applying the idea for simplifying the topology by reducing the number of switches (what came from drives) this NPC converter is capable of bidirectional AC/DC/AC operation. For the AC/DC part two schemes are tested: Direct Torque Control Space Vector Modulated and Field Oriented Control but for the DC/AC part a control scheme utilizing the proportional-resonant (PR) controller was chosen. Laboratory setup was based on a permanent magnet synchronous generator with control and acquisition completed with the help of dSpace 1005 control box. Experimental verification shows that system operates properly.

Keywords – AC-DC power converters; Power conversion harmonics; Wind energy generation; Bidirectional power flow.

I. INTRODUCTION

Cost optimization of a power converter based on the idea of replacing one of the semiconductor branches with a split capacitor bank and connecting a phase wire to its middle proposed in [1]. It gives lower number of switching devices comparing to a classical 2-level AC-DC-AC converter which corresponds to reduced number of control channels, IGBT driver circuits etc. Despite above advantages of a 2-level simplified converter for obtaining sinusoidal current there is a necessity to maintain higher DC voltage, that gives higher voltage stress of converter semiconductor devices [2]-[4]. This problem can be solved by application of a 3L-NPC power modules with clamping diodes. New compact devices make it easier to improve the topology with a split capacitor in DC-link that is shown in Fig. 1 [5], [6].

Content of the paper is the following. The second section describes the chosen modulation algorithms for the AC/DC/AC. The third section describes the two control methods implemented for the AC/DC part of converter connecting to PMSG and a proposed control utilizing a proportional-resonant (PR) controller for the grid side DC/AC converter. Section four is dedicated to experimental results. The last closing section is left for conclusion.

II. MODULATION

Modulation for simplified back-to-back converters is realized separately for the DC/AC and AC/DC stage with the use of switching states depicted in Fig.2 and Fig.3. It can be utilized using a universal concept of time-domain duty-cycle computation technique for single-phase multilevel converters described as one dimensional modulation (1DM) technique presented in Fig. 2 [7].

Fig. 2. Vector plane for 1-DM modulation of single-phase DC/AC converter.

For the single phase converter calculating durations of vectors are described as:

\[T_2 = \frac{|U_{ref}|}{0.5U_{DC}} \cdot T_s; \quad T_i = T_s - T_2; \quad \text{Re}(U_{ref}) \geq 0 \] and

\[T_0 = \frac{|U_{ref}|}{0.5U_{DC}} \cdot T_s; \quad T_i = T_s - T_0; \quad \text{Re}(U_{ref}) < 0 \] (1)

Fig. 3. Possible voltage vectors generated by the simplified three-phase DC/AC converter.
Fig. 3 shows graphic representation of space vector $\alpha\beta$ voltage plane with nine possible to obtain voltage vectors of three-phase three-level simplified converter. It gives eight active vectors (V_{21}, V_{22}, V_{12}, V_{10}, V_{01}, V_{00}, V_{11}, V_{20}) and one zero vector (V_{11}). Switching times for the Sector I ($0^\circ \leq \theta < 60^\circ$) can be computed as:

$$
T_{21} = \frac{\sqrt{6}U_\alpha}{U_{DC}} T_s - \frac{\sqrt{2}U_\beta}{U_{DC}} T_s
$$

$$
T_{22} = \frac{2\sqrt{2}U_\beta}{U_{DC}} T_s
$$

$$
T_{11} = T_s - T_{21} - T_{22}
$$

(2)

III. CONTROL

A. Control of Single-phase Grid Converter

Fig. 4 presents control of single-phase grid side converter based on PR controller firstly proposed in [8]. The ΔU_{DC} voltage is an error calculated by subtraction of measured DC-link voltage (U_{DC}) from DC voltage reference U_{DC_ref}. Error filtered by a low pass filter with a $f_{cut_off} = 30$Hz is entering a PI controller. Output value from the PI block with addition of the active power feed-forward signal (APFF) is then multiplied by a sine function of the grid voltage angle, which is calculated by a SOGI-PLL. Resulting outcome becomes reference value for the PR current controller and parallel harmonic compensator block. Resonant part of mentioned PR controller is tuned at the fundamental grid frequency ω_0 for which the highest gain is obtained but harmonic compensator contains resonant part tuned to specific high order harmonics e.g. 5^{th}, 7^{th} [9]-[10].

Fig. 4. Single-phase DC/AC converter control scheme.

Fig. 5. Three phase AC/DC converter control schemes of DTC-SVM (a) and IRFOC (b).
B. Control of Three-phase Generator Side Converter

For controlling the machine side converter two popular control strategies are investigated. The first shown in Fig. 5(a) is the Direct Torque Control with Space Vector Modulation (DTC-SVM) [11]. It consists of a torque M_s, stator flux ψ_s, and speed ω control loops. Reference value for torque is provided by an outer PI speed controller. Reference value of flux is subtracted from estimated and the error is an input for a PI flux controller. From outputs of PI torque and flux controllers converter voltage in dq coordinates is (after transformation to stationary coordinate system) a reference for modulation algorithm based on space vector representation (SVM) shown in Fig. 3.

Second viable control scheme is based on Indirect Rotor Field Oriented Control – IRFOC, Fig. 5(b). In this scheme reference speed denoted as $\omega_{r,ref}$ is compared with estimated angular speed ω_e. Obtained error is an input for a PI speed controller that calculates the reference for the current $i_{d,ref}$ (responsible for electromagnetic torque). Reference current $i_{d,ref}$ is set to be zero. PI current controllers set voltage values of $U_{d,ref}$ and $U_{q,ref}$ which after transformation to stationary $a\beta$ coordinate system are needed for space vector modulation (SVM). Active power feed forward (APFF) is calculated in both schemes Fig. 5(a) and Fig. 5(b) to improve dynamic performance and stabilize dc-link. APFF is delivered to the DC/AC converter as shown in Fig.4 [12]-[15].
A. DC/AC Converter Operation

Fig. 9. Steady state of single-phase DC/AC part of converter at grid connected mode of operation. From top: voltage on upper capacitor (U_{dc_u}), voltage on lower capacitor (U_{dc_d}), grid voltage (U_{a_sieci}) and grid current (i_{a_sieci}).

Fig. 10. Step-change of the load for single-phase DC/AC part of converter at stand-alone mode of operation. From top: voltage on upper capacitor (U_{dc_u}), voltage on lower capacitor (U_{dc_d}), grid voltage (U_{a_sieci}) and grid current (i_{a_sieci}).

B. AC/DC Control Operation with DTC-SVM

Fig. 11. Steady state of three-phase AC/DC part of converter. From top: phase to phase voltages of converter (u_{ab_gen}, u_{bc_gen}, u_{ca_gen}) and generator phase current (i_{a_gen}).

Fig. 12. Response for step change of speed. From top: reference speed (ω_{ref}), measured speed (ω_{gen}), estimated torque (M_{est}), phase current (i_{a_gen}).

Fig. 13. Response for step change of speed. From top: reference speed (ω_{ref}), measured speed (ω_{gen}), estimated torque (M_{est}), phase current (i_{a_gen}).
C. AC/DC Control Operation with IRFOC

Fig. 14. Steady state of AC-DC part of converter. From top: phase to phase voltage of converter (\(u_{ab_gen}\)) and generator phase currents (\(i_{a_gen}, i_{b_gen}, i_{c_gen}\)).

D. DC/AC Control Operation with APFF

Fig. 17. Response for step change of speed without APFF. From top: estimated speed (\(\Omega_{gen}\), current in d-axis (\(i_d\)), current in q-axis (\(i_q\)), generator current (\(i_{gen}\)).

Fig. 18. Response for step change of speed without APFF. From top: dc-link voltage (\(U_{dc}\)), grid voltage (\(U_{grid}\)), grid current (\(i_{grid}\)).

Fig. 19. Response for step change of speed with APFF. From top: estimated speed (\(\Omega_{gen}\), current in d-axis (\(i_d\)), current in q-axis (\(i_q\)), generator current (\(i_{gen}\)).
AC/DC/AC converters recently turned attention for small wind turbine (SWT) applications. Relatively simple control algorithm for the single-phase DC/AC part of converter allows to precisely eliminate higher order harmonic distortion in the grid current. Two possible control schemes for the AC/DC part of converter (DTC-SVM and IRFC) working with a PMSG are also investigated giving good dynamic response and sensorless operation. Further improvement can be provided with active power feed-forward (APFF) term added to the control system. Experimental validation proved the feasibility of simplified multilevel inverter in SWT. Presented system is an interesting alternative for low cost fully controlled AC-DC-AC converters applied to small power generator systems working with permanent magnet synchronous or induction generators interfacing to the single phase grid.

ACKNOWLEDGMENT

Described problems are a part of the project number 6511/B/T01/2011/49 “Research and development of a simplified three level AC/DC/AC diode clamped converter topology dedicated for use in wind energy applications” funded by National Science Center.

REFERENCES

Pawel Mlodzikowski received a M.Sc. EE degree from Kazimierz Pułaski University of Technology and Humanities in Radom (Poland), Faculty of Transport and Electrical Engineering in 2008. Since then a PhD student at Institute of Control and Industrial Electronics WUT. Postal address: Warsaw University of Technology, Institute of Control and Industrial Electronics, Koszykowa str. 75, 00-662 Warsaw, Poland. E-mail: pawel.mlodzikowski@ee.pw.edu.pl

Adam Mileczerk in 2005-2010 studied at Electrical Engineering Faculty of Warsaw University of Technology. Since 2011 Ph.D. student in Institute of Control and Industrial Electronics WUT. Postal address: Warsaw University of Technology, Institute of Control and Industrial Electronics, Koszykowa str. 75, 00-662 Warsaw, Poland. E-mail: adam.mileczerk@ee.pw.edu.pl

Mariusz Malinowski received the Ph.D. and D.Sc. degrees in electrical engineering from the Institute of Control and Industrial Electronics, Warsaw University of Technology (WUT), Poland, in 2001 and 2012, respectively. He has authored more than 130 technical papers. He is the holder of two implemented patents. He received IEEE IES David Irwin Early Career Award for Outstanding research and development of modulaiton and control for industrial electronics converters" in 2011. Postal address: Warsaw University of Technology, Institute of Control and Industrial Electronics, Koszykowa str. 75, 00-662 Warsaw, Poland. E-mail: malin@ee.pw.edu.pl